

Shi Bai; Damien Stehlé; Weiqiang Wen

ENS de Lyon

-Shi Bai, Damien Stehlé and Weiqiang Wen

Bounded Distance Decoding (BDD_{α})

Let $\alpha > 0$. Given as inputs a lattice basis **B** and a vector **t** such that $\operatorname{dist}(\mathbf{t}, \mathcal{L}(\mathbf{B})) \leq \alpha \cdot \lambda_1(\mathbf{B})$, the goal is to find a lattice vector $\mathbf{v} \in \mathcal{L}(\mathbf{B})$ closest to **t**.

Unique Shortest Vector Problem (\cup SVP $_{\gamma}$)

Let $\gamma \geq 1$. Given as input a lattice basis **B** such that $\lambda_2(\mathbf{B}) \geq \gamma \cdot \lambda_1(\mathbf{B})$, the goal is to find a non-zero vector $\mathbf{v} \in \mathcal{L}(\mathbf{B})$ of norm $\lambda_1(\mathcal{L}(\mathbf{B}))$.

- $\alpha = 2\gamma$, Lyubashevsky and Micciancio, 2009.
- Slightly smaller α , Liu *et al*, 2014.
- (Even) slightly smaller α (more), Galbraith; Micciancio, 2015.

• Our result:
$$\alpha = \sqrt{2\gamma}$$
.

Kannan's embedding.

► Kannan's embedding + Khot's *lattice* sparsification.

► First conjecture: BDD and USVP are computationally identical.

Note: for some constant *c*.

Second conjecture: $c = \sqrt{2}$. In order to prove it, we need to improve the reduction from USVP to BDD.