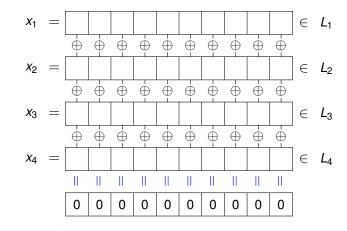


How to (Correctly) Invoke Wagner

Sonia Bogos; Serge Vaudenay

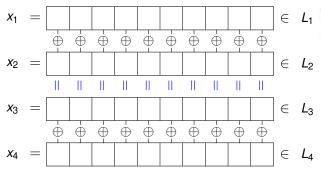
EPFL

How to (Correctly) Invoke Mezart Wagner New Results on LPN Solvers


Sonia Bogos and Serge Vaudenay

http://lasec.epfl.ch/

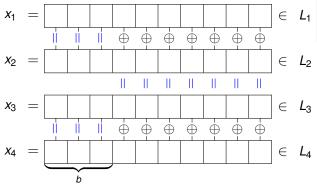
The Zero Four-Sum Problem


 L_1, L_2, L_3, L_4 : set of $n \ell$ -bit strings; look for s solutions

need $n = s^{\frac{1}{4}} 2^{\frac{\ell}{4}}$

The Collision Algorithm (Mozart)

 L_1, L_2, L_3, L_4 : set of $n \ell$ -bit strings; look for s solutions


Algorithm 1: make list of all $x_1 \oplus x_2$ and $x_3 \oplus x_4$ and look for collisions; comp = $O(n^2 + s)$

$$n = s^{\frac{1}{4}} 2^{\frac{\ell}{4}}, \text{ comp} = O(s^{\frac{1}{2}} 2^{\frac{\ell}{2}})$$

The Wagner Algorithm

 L_1, L_2, L_3, L_4 : set of $n \ell$ -bit strings; look for s solutions

Algorithm 2: same with list of XORs starting with *b* zero bits $n = s^{\frac{1}{4}} 2^{\frac{b+\ell}{4}}$, comp = $O(n + n^2 2^{-b} + s)$

$$b_{\text{opt}} = \frac{\ell + \log_2 s}{3}, \ n = s^{\frac{1}{3}} 2^{\frac{\ell}{3}}, \ \text{comp} = O(s^{\frac{1}{3}} 2^{\frac{\ell}{3}})$$

SV 2016

[ZJW16] Invoking Mezart Wagner

Faster Algorithms for Solving LPN, Zhang, Jiao, Wang, EUROCRYPT 2016

In the algorithm to solve LPN(512, 1/8):

LF(4) algorithm with $s = 2^{54}$, $\ell = 156$

	[ZJW16]	Mozart	Wagner
n	$s^{rac{1}{4}}2^{rac{\ell}{4}}=2^{53}$	$s^{rac{1}{4}}2^{rac{\ell}{4}}=2^{53}$	$s^{rac{1}{3}}2^{rac{\ell}{3}}=2^{70}$
comp	$s^{rac{1}{3}}2^{rac{\ell}{3}}=2^{70}$	$s^{rac{1}{2}}2^{rac{\ell}{2}}=2^{105}$	$s^{rac{1}{3}}2^{rac{\ell}{3}}=2^{70}$

(Table 7, p.192; $n \leftarrow n[1]$, $s \leftarrow n[2]$, $\ell \leftarrow b$)

Strange Complexities in [ZJW16]

 $x_1 \oplus \cdots \oplus x_a$

Bit complexity to XOR a = 10 *u*-bit strings (bytes: u = 8)

- naive approach: O(au) bit operations, too expensive (must be done 2⁷¹ times for LPN(512, 1/8))
- [ZJW16] approach: O(1) using a table lookup just read T(x₁||···||x_a)
 BUT: cost of concatenation is neglected!

ightarrow complexity results must be multiplied by 2⁶

Corrected Complexity Table

LPN instance	(512,1/8)	(532,1/8)	(592,1/8)
[GJL14] paper	2 ^{79.9}	2 ^{81.82}	2 ^{88.07}
(corrected)	2 ^{89.04}	2 ^{90.43}	2 ^{97.87}
[GJL14] talk	2 ^{79.7}		
(corrected)	2 ^{89.04}		
[ZJW16]	2 ^{74.732}	2 ^{76.902}	2 ^{83.843}
(corrected)	2 ^{80.45}	2 ^{82.53}	2 ^{89.46}
our results			
(breaking news!)	2 ^{78.85}	2 ^{81.90}	2 ^{88.16}

algorithms as greedy as a raccoon

Conclusion

"My IQ is one of the highest — and you all know it! Please don't feel so stupid or insecure; it's not your fault."

Donald Trump

 Bogos, Vaudenay: Observations on the LPN Solving Algorithm from Eurocrypt'16, eprint 2016/451

SV 2016