

Tower Number Field Sieve Variant of a Recent Polynomial Selection Method

Palash Sarkar; Shashank Singh

Indian Statistical Institute

The Tower Number Field Sieve + SS Polynomial Selection

Barbulescu et al. (Asiacrypt 2015)

The Tower Number Field Sieve + SS Polynomial Selection

exTNFS

Taechan Kim and Razvan Barbulescu, *Extended Tower Number Field Sieve: A New Complexity for Medium Prime Case* - Cryptology ePrint Archive: Report 2015/1027

Setup (\mathbb{F}_Q) :

$$Q = p^n$$
, where $n = \eta imes \kappa$ and $\gcd(\eta, \kappa) = 1$

- Complexity of NFS for non-prime field is better for boundary case i.e., $p = L_Q(2/3, c_p)$.
- Idea is to leverage the boundary case complexity by increasing p.

Polynomial Selection for TNFS

- Palash Sarkar and Shashank Singh, Tower Number Field Sieve Variant of a Recent Polynomial Selection Method. - Cryptology ePrint Archive: Report 2016/401
 - Polynomial Selection method subsumes GJL method.
 - Polynomial Selection method generalises Conjugation method.
 - It gives the new trade-offs which not covered by GJL and Conjugation method.

Algorithm: \mathcal{B} : Polynomial selection for TNFS.

Input: $p, n = \eta \kappa, d$ (a factor of κ) and $r \ge \kappa/d$. **Output**: h(x), f(x), g(x) and $\varphi(x)$.

Let $k = \kappa/d$; Randomly choose h(z) of deg η with small coeffs and irreducible modulo p. Let $R = \mathbb{Z}[z]/\langle h(z) \rangle$.

repeat

Randomly choose a monic irr $A_1(x)$ with small coeff.: deg $A_1 = r + 1$; mod p, $A_1(x)$ has an irr factor $A_2(x)$ of deg k. Choose monic $C_0(x)$ and $C_1(x)$: deg $C_0 = d$ and deg $C_1 < d$. Define

$$\begin{split} f(x) &= \operatorname{Res}_{y} \left(A_{1}(y), C_{0}(x) + y C_{1}(x) \right); \\ \varphi(x) &= \operatorname{Res}_{y} \left(A_{2}(y), C_{0}(x) + y C_{1}(x) \right) \mod p; \\ \psi(x) &= \operatorname{LLL}(M_{A_{2},r}); \\ g(x) &= \operatorname{Res}_{y} \left(\psi(y), C_{0}(x) + y C_{1}(x) \right). \end{split}$$

until f(x) and g(x) are irr over R and $\varphi(x)$ is irr over $\mathbb{F}_{p^{\eta}}[z]/\langle h(z) \rangle$.; return h(x), f(x), g(x) and $\varphi(x)$.

Example

Let p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835301611

and n = 6. Let $(\eta, \kappa) = (3, 2)$.

Example

Let p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835301611

and n = 6. Let $(\eta, \kappa) = (3, 2)$.

Taking $d = \kappa$ and r = 1, we get the following polynomials. $h(x) = x^3 + x^2 + 15 x + 7$ $f(x) = x^4 - x^3 - 2x^2 - 7x - 3$ $g(x) = 717175561486984577278242843019 x^2 + 2189435313197775056442946543188 x$ +2906610874684759633721189386207Note that $||g||_{\infty} \approx 2^{101}$.

> <同> < E> < E>

Example

Let p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835301611

and n = 6. Let $(\eta, \kappa) = (3, 2)$.

Taking $d = \kappa$ and r = 1, we get the following polynomials. If we take $d = \kappa$ and r = 2, we get the following set of polynomials. $h(x) = x^3 + x^2 + 15 x + 7$ $f(x) = x^6 - 4x^5 - 53x^4 - 147x^3 - 188x^2 - 157x - 92$ $g(x) = 15087279002722300985x^4 + 124616743720753879934x^3 + 451785460058994237397x^2$ + 749764394939964245000x + 567202989572349792620We have $||g||_{\infty} \approx 2^{69}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Asymptotic Analysis

Theorem

Let
$$n = \eta \kappa$$
; $gcd(\eta, \kappa) = 1$; $\kappa = kd$; $r \ge k$; $t \ge 2$; $p = L_Q(a, c_p)$ with $1/3 < a < 2/3$ and $0 < c_p < 1$; and $\eta = c_{\eta}(\ln Q/\ln \ln Q)^{2/3-a}$. It is possible to ensure that the runtime of the NFS algorithm with polynomials chosen by Algorithm \mathcal{B} is $L_Q(1/3, 2c_b)$ where

$$c_b = \frac{2r+1}{3c_\theta kt} + \sqrt{\left(\frac{2r+1}{3c_\theta kt}\right)^2 + \frac{kc_\theta(t-1)}{3(r+1)}} \text{ and } (2)$$

$$c_\theta = c_p c_\eta. \qquad (3)$$

$$c_{\theta} = c_{\rho}c_{\eta}.$$

Sarkar and Singh Indian Statistical Institute, Kolkata May, 2016

MTNFS and TNFS Combined Plot

MTNFS and TNFS Combined Plot

