

Fair Secure Computation (or how can I gain strategic advantage by breaking fairness)

Alptekin Küpçü

Koç University

Fair Secure Computation

ALPTEKİN KÜPÇÜ

Assistant Professor of Computer Science and Engineering

 X_4

 X_6

Y₃

 Y_4

Y₆

SMPC in a Corporate Setting

Ideal World

Ideal World

Real World

Simulator

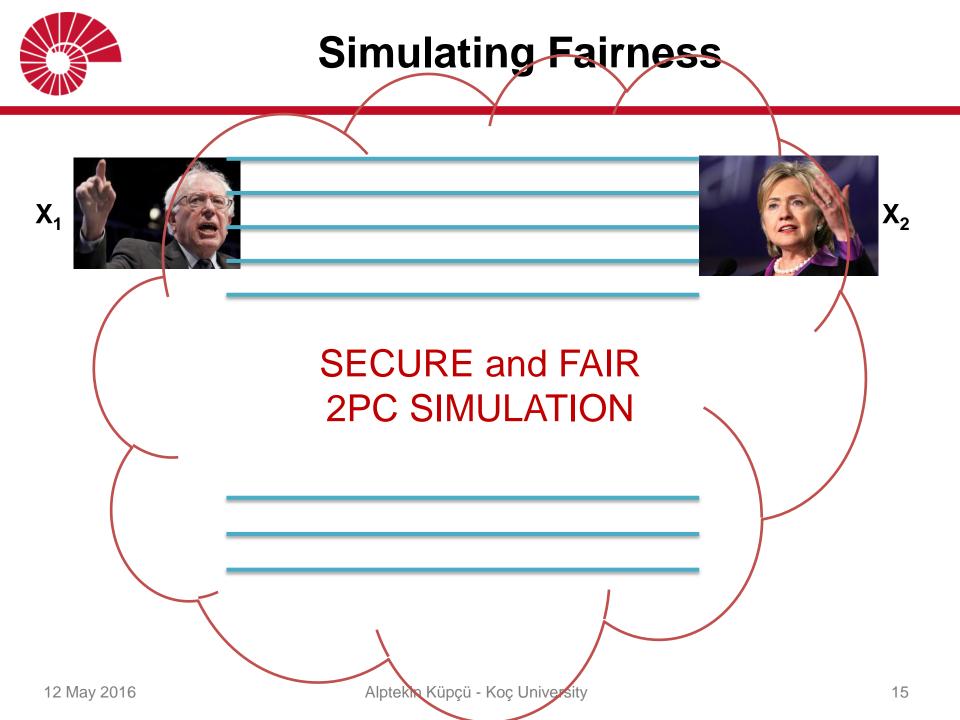
Fairness Impossible in General

- Assume a trusted Arbiter is available
 - Only trusted for fairness, not security
 - May collude with players
 - Should not learn input/output
 - Optimistically employed
 - Must be efficient (otherwise bottleneck)

Fairness Impossible in General

- Assume a trusted Arbiter is available
 - Only trusted for fairness, not security
 - May collude with players
 - Should not learn input/output
 - Optimistically employed
 - Must be efficient (otherwise bottleneck)
- Ideal TTP

Real Arbiter


Fair and Secure Computation

Fairness extentions and Arbiter resolutions must be simulated

Simulating Fairness

Fair and Secure Computation

- Fairness extentions and Arbiter resolutions must be simulated
 - Otherwise the protocol may be insecure!

Fair and Secure Computation

- Fairness extentions and Arbiter resolutions must be simulated
 - Otherwise the protocol may be insecure!
- Simulator may contact fairness is guaranteed

only when

Simulator

Ideal World

Real World

Fair and Secure Computation

- Fairness extentions and Arbiter resolutions must be simulated
 - Otherwise the protocol may be insecure!
- Simulator may contact fairness is guaranteed

only when

 Otherwise real and ideal world outputs are distinguishable

Fair and Secure Computation

- Fairness extentions and Arbiter resolutions must be simulated
 - Otherwise the protocol may be insecure!
- Simulator may contact fairness is guaranteed

only when

- Otherwise real and ideal world outputs are distinguishable
- Arbiter cannot harm security

Our Solutions

# Participants	# Rounds	# Messages
2	O(1)	O(1)
n	O(1)	O(n^2)

- OPTIMAL asymptotic performance
- Cut-and-choose or zero-knowledge
- Malicious or covert
- 2PC or MPC

Comparison

- Compared to related works, we provide
 - Optimal asymptotic performance
 - Constant round (not gradual release)
 - No broadcast
 - Arbiter load independent of the circuit size
 - Do not require an external payment mechanism
 - In a competitive corporate setting, how can one value some output that is unknown beforehand?
 - Full simulation proofs
 - Arbiter cannot harm security
 - Also proven via simulation
 - Only fairness is lost if Arbiter colludes with malicious parties

Our Papers

- Reading
 - Kılınç and Küpçü, CT-RSA 2015, Optimally Efficient Multi-Party Fair Exchange and Fair Secure Multi-Party Computation
 - Kılınç and Küpçü, FC 2016, Efficiently Making Secure Two-Party Computation Fair
 - Küpçü and Mohassel, FC 2016, Fast Optimistically Fair Cut-and-Choose 2PC
- Funding Acknowlegements
 - TÜBİTAK, the Scientific and Technological Research Council of TURKEY
 - COST Action IC1306 Cryptoactic—

ALPTEKİN KÜPÇÜ

Assistant Professor of Computer Science and Engineering

http://crypto.ku.edu.tr

