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- infermediate values actually exist !

- physical phenomenons
(consumption, EM, timing...)
[Koc 90s]
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we split the sensitive value such that x = xo @ x;

information is bounded, bound exponential in nb of observations [Chari et al.99, PR13]

2/18



probing model [ISW 2003]
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X1

secure against probing = secure against noisy leakage for a certain amount of " [Duc et all14]
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key-idea:
for security at order d, split sensitive data x into d + 1 random
variables (shares) s.t.

X=X D x DD xg

d -privacy:
compute f(x) from xq, x4, ..., X4 S.t. the computation still resists to
d observations

for two computations on two inputs, the two sets of d observations
must follow the same statistical distribution
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randomness in cryptography
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randomness in cryptography

used everywhere: )

- keys
- RSA prime factors %
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strong properties: PrgaR—
- uniformly distributed & &
- independent
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where does it come from?

INn tThe real world: natural randomness

randomness should be
inpractic ~ considered as a resource,

- Nesels like space and time
- slow

- bias or uneven distribution
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Ishai-Sahai-Wagner scheme (Crypto 2003)
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any wire value (aka probe) has the form:

p = ( 69 aibj> GB ( 69 T'k>
(i,j)ex<{o,...,d}> keYc{1,..,R}

any sum of probes has the form:

a--M-b @ st-7
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algebraic characterization

condition 1:

a set of probes P = {p4, ..., pp} satisfies condition 1 iff:
€Bf=129i =dt-M-b

and (1, ...,1) is in the row (or column) space of M

theorem:

C is d-private
&
there does not exist P = {py, ..., p,}, £ < d that satisfies condition 1
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proof sketch

= lassume {py, ..., Py} such that:

@lepi =dt-M-b
and(1, ..., 1) isin the column space of M

= there exists b’ € {0,1}4*1st. M- b' = (1,...,1)

1
Pr[(j’t.]\/[.[;:a]: E lfM'b:)t(l,...,l)
1

iftM-b=(1,..,1)

then,Pr[&t-M-I;:a]>Pr[&t-M-E=1—a]

< |a lot more technical...
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upper bound

randomness complexity of ISW: 0(d?)

needs for a quadratic complexity?

theorem:
there exists a d-private circuit for multiplication
with randomness complexity O(d).
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proof sketch

probabilistic method: non-constructive!

1, ..., T random bits
=p;j = D1<k<r i jk -7 Witha;, € {0,1}

Co — = Clibj
a1 & @ & -6 6 = py
Cqa —

correctness: pgq = Dij Pij W

d-privacy: if R = Q(d), Pr(is secure) > 0 = at least one algorithm is d-private
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lower bounds

theorem:
1. d -privacy = at least d random bits (for d = 2)
2. d-privacy = at least d + 1 random bits (ford = 3)




automatic tool for finding attacks

- based on the algebraic characterization

- relies on coding theory (information set decoding algorithms)

- not perfectly sound...
- much faster than Easycrypt-based [Barthe et al. 15]

order 2 3 4 5 6
[Barthe&al] <1 ms 36 ms 108 ms 6,35 26 min
this paper <10 ms <10 ms <10 ms <100 ms <300 ms

table: time to find an attack
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proof sketch of 1.

lemma:
S0, 51 two sets of at most d probes and s, = @pes, P

(r; € sp,Vi,b) A (s © sy =a-b) = Cisnot d-private

suppose an algorithm C with only 1y, ..., 74_1 and let ¢y, ..., ¢4 the output of C

let N = (ni,j)1sisd—1 € {0,13@ Vst n; ;=11 €
1<j<d

N has dimension (d — 1) X d = Ker(N) # {6}
letw € Ker(N) — {0}

So = {co} U {c;lw; = 0}and S; = {c;|w; = 1} satisfy requirements of lemma... .



