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electronic devices 

- cryptography is implemented 

 

 

- intermediate values actually exist ! 

 

 

- physical phenomenons  

(consumption, EM, timing…) 

[Koc 90s] 
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𝑓: 0,1 𝑛 → 0,1 𝑚 
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𝑟1 

. 
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𝑓(𝑥) 

correctness: 𝑂 𝐶 𝐼 𝑥; 𝜌 ; 𝑟 =  𝑓 𝑥 , ∀ 𝑥, 𝜌, 𝑟 

𝑑-privacy: for any set 𝑃 of 𝑑 wires in 𝐶 and for all 𝑥, 𝑦 ∈ 0,1 𝑛: 
{𝐶𝑃(𝐼 𝑥; 𝜌 ; 𝑟)}𝜌,𝑟 = {𝐶𝑃(𝐼 𝑦; 𝜌 ; 𝑟)}𝜌,𝑟 

… 

… 

𝑟2 𝑟𝑅 

𝜌2 𝜌ℓ 
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in practice: 

- need special hardware 

- slow 

- bias or uneven distribution 

randomness should be 
considered as a resource,  

like space and time 
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Ishai-Sahai-Wagner scheme (Crypto 2003) 

randomness complexity: 
𝑑(𝑑 + 1)/2 
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composition 
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upper bound 

theorem:  
there exists a 𝑑-private circuit for multiplication 
with randomness complexity Õ(𝑑). 

14/18 

randomness complexity of ISW: 𝑂 𝑑2  

 
needs for a quadratic complexity? 
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lower bounds 

theorem:  
1. 𝑑-privacy ⇒ at least 𝑑 random bits (for 𝑑 ≥ 2) 
2. 𝑑-privacy ⇒ at least 𝑑 + 1 random bits (for 𝑑 ≥ 3) 
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automatic tool for finding attacks 

order 2 3 4 5 6 

[Barthe&al] <1 ms 36 ms 108 ms 6,3 s 26 min 

this paper <10 ms <10 ms <10 ms <100 ms <300 ms 

- based on the algebraic characterization 
- relies on coding theory (information set decoding algorithms) 
- not perfectly sound... 
- much faster than Easycrypt-based [Barthe et al. 15] 

 

table: time to find an attack 
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