Structural Lattice Reduction: Generalized Worst-Case to Average-Case Reductions and Homomorphic Cryptosystems

Nicolas Gama, Malika Izabachene, Phong Nguyen, Xiang Xie

Inpher, Université Paris Saclay, Cea, Inria, CNRS, University of Tokyo, Huawei

May 10, 2016

$\mathsf{Section}\ 1$

Introduction

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

May 10, 2016 2 / 39

< A

æ

- Generalizing SIS and LWE to arbitrary groups: duality aspects.
- Structural reduction: finding short basis in overlattices in poly. time
 - Direct worst to avg -case reduction for SIS/LWE for arbitrary groups
 - Group-switching: which parameters actually matter for the security of SIS/LWE
 - Self worst-case to average case reducibility of general lattice problems
- An abstraction framework that connects lattice based cryptography to classical crypto building blocs
- A fully homomorphic generalization of [GSW13] using our abstraction
 - Link with binary decision diagrams and automata theory.

- Generalizing SIS and LWE to arbitrary groups: duality aspects.
- Structural reduction: finding short basis in overlattices in poly. time
 - Direct worst to avg -case reduction for SIS/LWE for arbitrary groups
 - Group-switching: which parameters actually matter for the security of SIS/LWE
 - Self worst-case to average case reducibility of general lattice problems
- An abstraction framework that connects lattice based cryptography to classical crypto building blocs
- A fully homomorphic generalization of [GSW13] using our abstraction
 - Link with binary decision diagrams and automata theory.

Lattice Problems in Crypto

One actually deals with problems not defined using lattices:

- SIS.
- LWE.

Both are connected to lattice problems and usually presented with linear algebra:

instead, we adopt a group-theoretical point of view, and clarify their duality.

Section 2

Lattice problems, SIS, LWE

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

May 10, 2016 5 / 39

э

Subsection 1

Lattice-based security

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

May 10, 2016 6 / 39

æ

Definition of a lattice

Definition

- Lattice = Discrete subgroup of \mathbb{R}^m
- Description: (non-unique) basis.

Lattice problems are a mess

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

May 10, 2016 8 / 39

Finding a lattice point within a ball

• Let L be a lattice and $\mathcal S$ a ball, find a lattice point in this ball.

May 10, 2016

9 / 39

- L described by a basis
- $\bullet~\mathcal{S}$ described by its center and radius.

May 10, 2016

10 / 39

э

Approx problem

- $\operatorname{vol}(\mathcal{S}) \gg \operatorname{vol}(L)$
 - lots of solutions.

Approx problem

- $\operatorname{vol}(\mathcal{S}) \gg \operatorname{vol}(L)$
 - lots of solutions.

Approx problem

- $\operatorname{vol}(\mathcal{S}) \gg \operatorname{vol}(L)$
 - lots of solutions.

Approx problem

- $\operatorname{vol}(\mathcal{S}) \gg \operatorname{vol}(L)$
 - lots of solutions.

Exact problem

- $\operatorname{vol}(\mathcal{S}) \approx \operatorname{vol}(L)$
 - \approx single solution

Approx problem

- $\operatorname{vol}(\mathcal{S}) \gg \operatorname{vol}(L)$
 - lots of solutions.

Exact problem

- $\operatorname{vol}(\mathcal{S}) \approx \operatorname{vol}(L)$
 - \approx single solution

Approx problem

- $\operatorname{vol}(\mathcal{S}) \gg \operatorname{vol}(L)$
 - lots of solutions.

Exact problem

- $\operatorname{vol}(\mathcal{S}) \approx \operatorname{vol}(L)$
 - \approx single solution

Approx problem

- $\operatorname{vol}(\mathcal{S}) \gg \operatorname{vol}(L)$
 - lots of solutions.

Exact problem

- $\operatorname{vol}(\mathcal{S}) \approx \operatorname{vol}(L)$
 - \approx single solution

Unique problem

- $\operatorname{vol}(\mathcal{S}) \ll \operatorname{vol}(L)$
- Random instances have no solution

Approx problem

- $\operatorname{vol}(\mathcal{S}) \gg \operatorname{vol}(L)$
 - lots of solutions.

Exact problem

- $\operatorname{vol}(\mathcal{S}) \approx \operatorname{vol}(L)$
 - \approx single solution

Unique problem

- $\operatorname{vol}(\mathcal{S}) \ll \operatorname{vol}(L)$
- Random instances have no solution

Approx problem

- $\operatorname{vol}(\mathcal{S}) \gg \operatorname{vol}(L)$
 - lots of solutions.

Exact problem

- $\operatorname{vol}(\mathcal{S}) \approx \operatorname{vol}(L)$
 - \approx single solution

Unique problem

- $\operatorname{vol}(\mathcal{S}) \ll \operatorname{vol}(L)$
- Random instances have no solution
- Only specially crafted instances have a single one

Density vs Proved Asymptotic Hardness

Density vs Proved Asymptotic Hardness

May 10, 2016 11 / 39

Density vs Proved Asymptotic Hardness

May 10, 2016 11 / 39

Subsection 2

GSIS

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

→ < Ξ →</p> May 10, 2016 12 / 39

• • • • • • • • •

3

Parameters:

• Pick g_1, \ldots, g_m uniformly at random in an abelian group G

The GSIS function

$$\begin{array}{rccc} f_{\mathrm{GSIS}}: & \mathrm{Ball}_{\beta}(\mathbb{Z}^m) & \to & G \\ & & (x_1, \dots, x_m) & \mapsto & \sum_{i=1}^m x_i g_i \end{array}$$

Properties

One way.

ullet Inverting $f_{
m GSIS}$ is the GSIS problem (aka. subset sum, ...)

Solving GSIS in average is essentially:

finding short vectors in a (uniform) random lattice of

$$L(G) = \{ \text{lattices } L \subset \mathbb{Z}^m \text{ s.t. } \mathbb{Z}^m / L \sim G \}$$

- [Ajtai96] If one can efficiently solve SIS for $G = (\mathbb{Z}/q\mathbb{Z})^n$ on the average, then one can efficiently find short vectors in every n-dim lattice.
- [GINX16] This can be generalized to any finite abelian group G, provided that #G is sufficiently large $\geq n^{\Omega(\max(n, \operatorname{rank}(G)))}$ Note: $(\mathbb{Z}/2\mathbb{Z})^n$ is not.

GSIS (Group) hardness depends

✓ on the order #G?

✓ on β?

Yes: harder when $\#G \nearrow$ **Yes:** harder when $\beta \searrow$

GSIS (Group) hardness depends

✓ on the order #G?

 \checkmark on β ?

Yes: harder when $\#G \nearrow$ **Yes:** harder when $\beta \searrow$

GSIS hardness does NOT depend on

• on *m*?

Should be: harder when $m \searrow$ but sometimes, GSIS is intractable $\forall m$

X on the structure (cycles) of G?
No! All structures are equivalent (Structural reduction)

X on the choice of the family (g₁,..., g_m)?
 No! Almost all instances are hard (worst-case to avg case red.)

Subsection 3

GLWE

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

-≣-> 17 / 39 May 10, 2016

Image: A matrix and a matrix

æ

A character of G is a morphism from G to the torus T = (ℝ/Z, +)
G is isomorphic to its dual group Ĝ = {characters of G}

Let (G, +) be a finite Abelian group:

- Pick g_1, \ldots, g_m uniformly at random from G.
- Pick a random character \hat{s} in \hat{G} .
- **Goal:** recover \hat{s} given g_1, \ldots, g_m and noisy approximations of $\hat{s}(g_1), \ldots, \hat{s}(g_m)$, where the noise is Gaussian.

[Regev05] used $G = (\mathbb{Z}/q\mathbb{Z})^n$ like [Ajtai96] for SIS.

•
$$g_1, \ldots, g_m = (1, 3, 6, ..., 24)$$
 rand. in \mathbb{Z}_{25}
• secret: $\hat{s}(a) = \frac{2 \cdot a}{25} \mod 1$.

< A

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

æ

- $g_1, \ldots, g_m = (1, 3, 6, ..., 24)$ rand. in \mathbb{Z}_{25}
- secret: $\hat{s}(a) = \frac{2 \cdot a}{25} \mod 1$.
 - GLWE samples $f_{\mathrm{GLWE}}(\hat{s})$

g₁,..., g_m = (1,3,6,...,24) rand. in Z₂₅
 secret: ŝ(a) = ^{2⋅a}/₂₅ mod 1.
 GLWE samples f_{GLWE}(ŝ)
 Random samples in T

Without the secret $(\hat{s} = \hat{2} \text{ here})$

• Both distributions are very hard to distinguish

Parameters:

• Pick g_1, \ldots, g_m uniformly at random in an abelian group G

May 10, 2016

21 / 39

The GLWE function

$$\begin{aligned} f_{\text{GLWE}} : & \hat{G} & \to & \mathbb{T}^m \\ & \hat{s} & \mapsto & (\hat{s}(g_i), \dots, \hat{s}(g_m)) + \text{noise} \end{aligned}$$

Properties

- One way.
- ullet Inverting $f_{
 m GLWE}$ is the GLWE problem

- [Regev05]: If one can efficiently solve LWE for $G = (\mathbb{Z}/q\mathbb{Z})^n$ on the average, then one can quantum-efficiently find short vectors in every *n*-dim lattice.
- [GIN×16]: This can be generalized to any finite abelian group G, provided that #G is sufficiently large.

Section 3

Lattice Cryptography

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

May 10, 2016 23 / 39

< A

æ

Two Types of Techniques

- Cryptography using trapdoors, i.e. secret short basis of a lattice. Similarities with RSA/Rabin cryptography.
- Cryptography without trapdoors. Similarities with Diffie-Hellmann-based cryptography.

One-way function

Then $m \to m^e$ is a trapdoor one-way permutation over $(\mathbb{Z}/N\mathbb{Z})^*$.

Trapdoor

- $d = e^{-1} \mod \phi(N)$ is a trapdoor.
- \bullet Very expensive to compute from (N,e), but once we have it, inversion $c \to c^d$ is easy
- (in general we build the trapdoor first!)

May 10, 2016

25 / 39

Trapdoor for Lattices

One way functions

•
$$f_{\text{GSIS}}$$
: short $(x_1 \dots, x_m) \to \sum x_i g_i$

• f_{GLWE} : character $\hat{s} \to (\hat{s}(g_1), \dots, \hat{s}(g_m)) + \text{noise}$

Trapdoor

- But if we get any short basis of the SIS lattice (g₁,...,g_m)[⊥], both become easy to invert.
 see: [GGH97], [Micc01], [NTRU96], [GPV08], [MP12], [CGGI16]...
- (Again, one would build the trapdoor first!)

Alice

Bob

Bob

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

May 10, 2016 27 / 39

May 10, 2016 27 / 39

• This key exchange is the core of El-Gamal PK encryption

- let $e: e(a,b) = g^{ab}$ this map is a pairing, it is bilinear from $\mathbb{Z}_q \times \mathbb{Z}_q \to G$.
- let $f: a \mapsto g^a$ be the DL one-way function

Computability

 $e(a,b) \mbox{ can be computed using } (f(a),b) \mbox{ or } (a,f(b))$ even if $a \mbox{ or } b$ is hidden by f

Security

hard to distinguish (f(a), f(b), e(a, b)) from (f(a), f(b), random)

- What would be the pairing?
- What would be the one-way function to hide inputs?

May 10, 2016

29 / 39

The Pairing (for
$$g_1, \ldots, g_m \leftarrow_{\$} G$$
)

$$\begin{array}{rcccc} & \tilde{G} \times \mathbb{Z}^m & \to & \mathbb{T} \\ & & (\hat{s}, \mathbf{x}) & \mapsto & \hat{s} \left(\sum_{i=1}^m x_i g_i \right) \end{array}$$

errors/approximations are ok if x_i are small.

Computability

• Let
$$y = f_{SIS}(x_1, \dots, x_m) = \sum x_i g_i \in G$$

Then: $\xi(\hat{s}, \mathbf{x}) = \hat{s}(y) \in \mathbb{T}$
• Let $\mathbf{b} = f_{LWE}(\hat{s}) \approx (\hat{s}(g_1), \dots, \hat{s}(g_m)) \in \mathbb{T}^m$

Then:
$$\xi(\hat{s}, \mathbf{x}) pprox \langle \mathbf{x}, \mathbf{b}
angle \in \mathbb{T}$$

Alice

 Bob

Bob

May 10, 2016

31 / 39

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

May 10, 2016 31 / 39

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

May 10, 2016 31 / 39

- This key exchanges gives rise to two El-Gamal PK encryptions schemes, because the lattice pairing is not symmetric
- These El-Gamal-like schemes are IND-CPA secure under the hardness of SIS/LWE (post-quantum?)
- Similarly, many LWE/SIS schemes can be viewed as analogues of the RSA/DL world: [GPV08] is a lattice analogue of Rabin's signature, etc.

Section 4

Fully Homomorphic Encryption

Nicolas Gama, Malika Izabachene, PhongStructural Lattice Reduction: Generalized

May 10, 2016 33 / 39

æ

Among the various homomorphic schemes:

• [Gentry09], [BGV], [SHE], [YaSHE], [GSW], ...

We focused on one particular line

• [GSW13] - [AP14] - [DM15]

GSW can do

- (Like all others) additions and linear combinations
- Based on LWE (see $f_{\rm LWE}$ + trapdoors)
- [AP14]: Conjunctions with sublinear noise overhead!
- [DM15]: (external) Bootstrapping in less than 1 second!

- [GINX16]: evaluate (reduced) binary decision diagrams and deterministic automata with sublinear noise overhead, (almost) independently of the depth!!
- [GINX16]: universal composition of boolean functions (with exponential noise overhead in the number of compositions)[GINX16]: internal (but slow) bootstrapping

it really matters a lot!

- We implement our everyday's life problems as finite state machine algorithms:
 - see elementary school arithmetic: equality, an order check, an addition, a multiplication...
 - but also non arithmetic: full-text search, password check, etc...!
- Having the automata or binary decision diagram logic is way more general than polynomial arithmetic

The main drawback

If it is so "perfect", why don't we use it in practice?

- The gate complexity is polynomial in the security parameter $\approx O(\lambda^2)$ per bit, with very limited batching capabilities
- In general (except for [DM15] bootstrapping), performance of the whole GSW line lags very far behind other candidates (BGV, YaSHE, ...)

May 10, 2016

38 / 39

The main drawback

If it is so "perfect", why don't we use it in practice?

- The gate complexity is polynomial in the security parameter $\approx O(\lambda^2)$ per bit, with very limited batching capabilities
- In general (except for [DM15] bootstrapping), performance of the whole GSW line lags very far behind other candidates (BGV, YaSHE, ...)

So... performance = big open problem?

Don't despair, stay tuned, work is in progress!

May 10, 2016

38 / 39

- Oirect worst-case to average reductions for any group structures, via a new simple tool call "structural-reduction"
- A framework to abstract Lattice cryptography and to link it with traditional crypto constructions.
 - **1** allows to build new post-quantum cryptosystems
 - also to transfer security properties from traditional systems to lattice-based ones!
- A new framework for LWE-based homomorphic encryption:
 - based on classical automata and binary decision diagram theories
 - and universal composition of boolean functions