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Principal ideals in cryptography

Let K be a numberfield (e.g. = Q(ζm))
and R its ring of integer (R = Z[ζm]).

A few cryptosystems, for example:

I Soliloquy [Campbell et al., 2014]

I FHE [Smart and Vercauteren, 2010]

I Graded encoding schemes [Garg et al., 2013, Langlois et al., 2014]

share this Key Generation procedure.

KeyGen

sk Choose a “short” g ∈ R as a private key

pk Give a bad Z-basis B of the ideal (g) as a public key (e.g. HNF).
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Short generator recovery

Cryptanalysis in two steps (Key Recovery Attack)
1 Principal Ideal Problem (PIP)

I Given a Z-basis B of a principal ideal I,
I Recover some generator h (i.e. I = (h))

2 Short Generator Problem
I Given an arbitrary generator h ∈ R of I
I Recover g (or some g ′ equivalently short)
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Cost of those two steps

1 Principal Ideal Problem (PIP)
I sub-exponential time (2Õ(n2/3)) classical

algorithm [Biasse and Fieker, 2014, Biasse, 2014].
I quantum polynomial time algorithm [Eisenträger et al., 2014,

Campbell et al., 2014, Biasse and Song, 2015].

2 Short Generator Problem
I equivalent to the CVP in the log-unit lattice
I becomes a BDD problem in the crypto cases.
I claimed to be easy [Campbell et al., 2014] for the mth-cyclotomic ring

when m = 2k

I confirmed by experiments [Schank, 2015]

This Work

We focus on step 2 , and prove it can be solved in classical polynomial time
for the aforementioned cryptanalytic instances, when the ring R is the ring
of integers of the cyclotomic number field K = Q(ζm) for m = pk .
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1 Introduction

2 Overview

3 Results and conclusion
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The Problem

Short generator recovery

Given h ∈ R, find a small generator g of the ideal (h).

Note that g ∈ (h) is a generator iff g = u · h for some unit u ∈ R×.
We need to explore the (multiplicative) unit group R×.

Translation an to additive problem

Take logarithms:

Log : g 7→ (log |σ1(g)|, . . . , log |σn(g)|) ∈ Rn

where the σi ’s are the canonical embeddings K→ C.
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The Unit Group and the log-unit lattice

Let R× denotes the multiplicative group of units of R. Let

Λ = LogR×.

Theorem (Dirichlet unit Theorem)

Λ ⊂ Rn is a lattice (of a given rank).

Reduction to a Close Vector Problem

Elements g is a generator of (h) if and only if

Log g ∈ Log h + Λ.

Moreover the map Log preserves some geometric information:
g is the “smallest” generator iff Log g is the “smallest” in Log h + Λ.
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Example: Embedding Z[
√
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I component-wise additions and
multiplications

� “Orthogonal” elements

� Units (algebraic norm 1)

� “Isonorms” curves
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Example: Logarithmic Embedding LogZ[
√

2]

({•},+) is a sub-monoid of R2

1

1 Log−−→
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Example: Logarithmic Embedding LogZ[
√

2]

Λ =({•},+) ∩ � is a lattice of R2, orthogonal to (1, 1)

1

1 Log−−→
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Example: Logarithmic Embedding LogZ[
√

2]

{•} ∩ � are shifted finite copies of Λ

1

1 Log−−→
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Reduction modulo Λ = LogZ[
√

2]×

The reduction modΛ for various fundamental domains.

1

1 Log−−→
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Round-Off Decoding

We also need the fundamental domain to have an efficient reduction
algorithm. The simplest one follows:

Round(B, t) for B a basis of Λ

I Return B · frac(B−1 · t).

Used as a decoding algorithm, its correctness is characterized by the error e
and the dual basis B∨ = B−T .

Fact [Lenstra, 1982, Babai, 1986]

Suppose t = v + e for some v ∈ Λ. If 〈b∨j , e〉 ∈ [−1
2 ,

1
2 ) for all j , then

Round(B, t) = v.
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Recovering Short Generator: Proof Plan

Folklore strategy [Bernstein, 2014, Campbell et al., 2014] to recover a
short generator g

1 Construct a basis B of the unit-log lattice LogR×

I For K = Q(ζm), m = pk , an (almost1) canonical basis is given by

bj = Log
1− ζ j

1− ζ
, j ∈ {2, . . . ,m/2}, j co-prime with m

2 Prove that the basis is “good”, that is ‖b∨j ‖ are all small

3 Prove that e = Log g is small enough

Technical contributions
2 Estimate ‖b∨j ‖ precisely using analytic tools

[Washington, 1997, Landau, 1927]

3 Bound e using theory of sub-exponential random variables
[Vershynin, 2012]

1it only spans a super-lattice of finite index h+ which is conjectured to be small
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Geometric statement from Analytic Number Theory

Theorem ([Landau, 1927])

If χ is a non-quadratic Dirichlet character of conductor f .

|L(1, χ)| ≥ 1/O(log f ).
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If χ is a non-quadratic Dirichlet character of conductor f .

|L(1, χ)| ≥ 1/O(log f ).

Theorem (Cramer, D. , Peikert, Regev)

Let m = pk , and B = (Log(bj))j∈G\{1} be the canonical basis of LogC.
Then, for all j ∥∥b∨j ∥∥2 ≤ O

(
m−1 · log3 m

)
.

Interpretation

The log-unit lattice LogR× admits a (known, efficiently computable) basis
that is almost orthogonal: BDD is easy !
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No Crypto from Principal Ideals

We formalized, generalized and proved a claim of [Campbell et al., 2014]:

Corollary [Cramer, D. , Peikert, Regev] (simplified)

If g follows a reasonable distribution, then given any generator h of (g), one
may recover g in poly-time with probability 1− o(1).

Combined with a poly-time quantum algorithm2 of [Biasse and Song, 2015],
this breaks several cryptographic proposal.

2Alt. a classical sub-exponential algorithm [Biasse and Fieker, 2014, Biasse, 2014].
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What about the worst case ?

Theorem [Cramer, D. , Peikert, Regev]

Given a generator h of any principal ideal (h), one may find in poly-time a
generator g of (h) of length

‖g‖ ≤ N(h)1/n · 2Õ(
√
n).

We also show that this is nearly optimal:

Theorem [Cramer, D. , Peikert, Regev]

In some principal ideals I, the shortest generator has length at least

‖g‖ ≥ N(I)1/n · 2Ω(
√
m/ log m).
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Open questions

1 Are there other classes of rings whose log-unit lattice can be studied ?
I For cyclotomics, several happy event for the proof to go through.
I Other rings are harder to study. Security by ignorance ?

2 Does this result has a bearing on (worst-case) non-principal ideals ?
I Possibly: class group Caley graphs, Stickleberger’s Ideal . . .
I This approach seems limited to large approx. factors 2Õ(

√
n).

3 And on Ring-LWE ?
I Seems much harder than 2 .
I Would still be limited to large approx. factors 2Õ(

√
n).

Cramer, D., Peikert, Regev (Leiden, CWI,NYU, UM) Recovering Short Generators Eurocrypt, May 2016 17 / 21



Questions ?

Thanks for your attention !
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