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Principal ideals in cryptography

Let K be a numberfield (e.g. = Q(¢m))
and R its ring of integer (R = Z[(m])-

A few cryptosystems, for example:
» Soliloquy [Campbell et al., 2014]
» FHE [Smart and Vercauteren, 2010]
» Graded encoding schemes [Garg et al., 2013, Langlois et al., 2014]
share this Key Generation procedure.

sk Choose a “short” g € R as a private key
pk Give a bad Z-basis B of the ideal (g) as a public key (e.g. HNF).
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Short generator recovery

Cryptanalysis in two steps (Key Recovery Attack)
@ Principal Ideal Problem (PIP)

» Given a Z-basis B of a principal ideal 7,
> Recover some generator h (i.e. J = (h))
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Short generator recovery

Cryptanalysis in two steps (Key Recovery Attack)
@ Principal Ideal Problem (PIP)
» Given a Z-basis B of a principal ideal 7,
> Recover some generator h (i.e. J = (h))
@ Short Generator Problem

» Given an arbitrary generator h € R of J
> Recover g (or some g’ equivalently short)
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Cost of those two steps

@ Principal Ideal Problem (PIP)
> sub-exponential time (20(”2/3)) classical
algorithm [Biasse and Fieker, 2014, Biasse, 2014].

» quantum polynomial time algorithm [Eisentrager et al., 2014,
Campbell et al., 2014, Biasse and Song, 2015].

@ Short Generator Problem
» equivalent to the CVP in the log-unit lattice
» becomes a BDD problem in the crypto cases.
» claimed to be easy [Campbell et al., 2014] for the m*-cyclotomic ring
when m = 2k
» confirmed by experiments [Schank, 2015]

We focus on step @ , and prove it can be solved in classical polynomial time

for the aforementioned cryptanalytic instances, when the ring R is the ring
of integers of the cyclotomic number field K = Q((,,) for m = pk.
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The Problem

Short generator recovery

Given h € R, find a small generator g of the ideal (h).

Note that g € (h) is a generator iff g = u - h for some unit u € R*.
We need to explore the (multiplicative) unit group R*.
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The Problem

Short generator recovery
Given h € R, find a small generator g of the ideal (h).

Note that g € (h) is a generator iff g = u - h for some unit v € R*.
We need to explore the (multiplicative) unit group R*.

Translation an to additive problem

Take logarithms:

Log : g — (log|o1(g)l,- .- ,log|on(g)]) € R”

where the ¢;’s are the canonical embeddings K — C.
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The Unit Group and the log-unit lattice

Let R* denotes the multiplicative group of units of R. Let

A = Log R*.

Theorem (Dirichlet unit Theorem)

N C R" is a lattice (of a given rank).
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The Unit Group and the log-unit lattice

Let R* denotes the multiplicative group of units of R. Let

A = Log R*.

Theorem (Dirichlet unit Theorem)

N C R" is a lattice (of a given rank).

Reduction to a Close Vector Problem

Elements g is a generator of (h) if and only if

Logg € Log h + A.

Moreover the map Log preserves some geometric information:
g is the “smallest” generator iff Log g is the “smallest” in Log h + A.
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Example: Embedding Z[v/2] — R?

» x-axis: o1(a+ bv/2) = a+ by2
> y-axis: o2(a+ bv2) = a— bV2
» component-wise additions and

o . multiplications
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Example: Embedding Z[v/2] — R?

I
/‘ ‘\‘ ’ » x-axis: o1(a+ bv/2) = a+ by2
“/‘ \" > y-axis: o2(a+ bv2) = a— bV2
/ .
/ 2 : » component-wise additions and
multiplications
= ——
1
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\\ ‘w‘ f " M Units (algebraic norm 1)
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Example: Logarithmic Embedding Log Z[v/2]

({e},+) is a sub-monoid of R?
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Example: Logarithmic Embedding Log Z[v/2]

A =({e},+) N _is a lattice of R2, orthogonal to (1,1)
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Example: Logarithmic Embedding Log Z[v/2]

{®} N " are shifted finite copies of A
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Reduction modulo A = Log Z[/2]*

The reduction modA for various fundamental domains.
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Reduction modulo A = Log Z[/2]*

The reduction modA for various fundamental domains.
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Round-Off Decoding

We also need the fundamental domain to have an efficient reduction
algorithm. The simplest one follows:

RounD(B, t) for B a basis of A

> Return B - frac(B~! - t).

Used as a decoding algorithm, its correctness is characterized by the error e
and the dual basis BV =B~ .

Fact [Lenstra, 1982, Babai, 1986]

Suppose t = v + e for some v € A. If (b}, e) € [—3.3) for all j, then

RounD(B, t) = v.
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Recovering Short Generator: Proof Plan

Folklore strategy [Bernstein, 2014, Campbell et al., 2014] to recover a
short generator g
@ Construct a basis B of the unit-log lattice Log R*
» For K = Q(¢n), m = p¥, an (almost!) canonical basis is given by

10
b; = Log 172, Jj€{2,...,m/2},j co-prime with m

@ Prove that the basis is “good”, that is ||b/|| are all small

© Prove that e = Log g is small enough

lit only spans a super-lattice of finite index h™ which is conjectured-to be small
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Recovering Short Generator: Proof Plan

Folklore strategy [Bernstein, 2014, Campbell et al., 2014] to recover a
short generator g
@ Construct a basis B of the unit-log lattice Log R*
» For K = Q(¢n), m = p¥, an (almost!) canonical basis is given by

10
b; = Log 17%, Jj€{2,...,m/2},j co-prime with m

@ Prove that the basis is “good”, that is ||b/|| are all small

© Prove that e = Log g is small enough

Technical contributions

Q Estimate ||b;|| precisely using analytic tools
[Washington, 1997, Landau, 1927]

© Bound e using theory of sub-exponential random variables
[Vershynin, 2012]

Lit only spans a super-lattice of finite index h™ which is conjectured-to be small
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Geometric statement from Analytic Number Theory

Theorem ([Landau, 1927])

If x is a non-quadratic Dirichlet character of conductor f.

IL(1,x)| > 1/O(log f).
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Geometric statement from Analytic Number Theory

Theorem ([Landau, 1927])

If x is a non-quadratic Dirichlet character of conductor f.

IL(L, x)| = 1/O(log £).

A\

Theorem (Cramer, D. , Peikert, Regev)

Let m = p¥, and B = (Log(bj))jeq\ (1} be the canonical basis of Log C.
Then, for all j

Hbj\/H2 <0 (m_1 . Iog3 m) .

Interpretation

| A\,

The log-unit lattice Log R* admits a (known, efficiently computable) basis
that is almost orthogonal: BDD is easy !

\
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No Crypto from Principal Ideals

We formalized, generalized and proved a claim of [Campbell et al., 2014]:

Corollary [Cramer, D. , Peikert, Regev] (simplified)

If g follows a reasonable distribution, then given any generator h of (g), one
may recover g in poly-time with probability 1 — o(1).

Combined with a poly-time quantum algorithm? of [Biasse and Song, 2015,
this breaks several cryptographic proposal.

2Alt. a classical sub-exponential algorithm [Biasse and Fieker,-2014; Biasse, 2014].
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What about the worst case ?

Theorem [Cramer, D. , Peikert, Regev]

Given a generator h of any principal ideal (h), one may find in poly-time a
generator g of (h) of length

lgll < N(h)Y/" - 20(/™)
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What about the worst case ?

Theorem [Cramer, D. , Peikert, Regev]

Given a generator h of any principal ideal (h), one may find in poly-time a
generator g of (h) of length

lgll < N(h)Y/" - 20(/™)

We also show that this is nearly optimal:

Theorem [Cramer, D. , Peikert, Regev]

In some principal ideals J, the shortest generator has length at least

gl = N3/ . 2UVm/ logm)
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Open questions

Are there other classes of rings whose log-unit lattice can be studied ?

» For cyclotomics, several happy event for the proof to go through.
» Other rings are harder to study. Security by ignorance ?

@ Does this result has a bearing on (worst-case) non-principal ideals ?
» Possibly: class group Caley graphs, Stickleberger's Ideal ...
» This approach seems limited to large approx. factors 20V

© And on Ring-LWE ?

» Seems much harder than @ . }
» Would still be limited to large approx. factors 20(v).
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