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Elliptic curves

E (k): elliptic curve over a field k with char(k) 6= 2, 3

Every elliptic curve can be written in short Weierstrass form

I Embedded in P2(k) as E : Y 2Z = X 3 + aXZ 2 + bZ 3

I The point O = (0 : 1 : 0) is called the point at infinity

I Affine points (x : y : 1) given by y2 = x3 + ax + b

I The points on E form an abelian group under point addition
⊕ (with neutral element O)

I Scalar multiplication (k ,P) 7→ [k]P (k ∈ Z,P ∈ E )

I The order of E is its order as a group
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Elliptic curve cryptography (ECC)

Elliptic curve discrete logarithm problem (ECDLP)

Given two points P,Q ∈ E such that Q ∈ 〈P〉. Find k ∈ Z such
that Q = [k]P.

Commonly k is a secret, Q is public

I Key exchange: ECDH

I Signatures: ECDSA, EdDSA
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Weierstrass model

Figure: E/R : y2 = x3 + ax + b
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Chord and tangent addition

I if P 6= ±Q
I if P 6= O
I if Q 6= O

Figure: E/R : y2 = x3 + ax + b
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Weierstrass model doubling

I if P 6= O

Figure: E/R : y2 = x3 + ax + b
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Weierstrass model doubling

I if P 6= O

Figure: E/R : y2 = x3 + ax + b
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Implementation (Homogeneous addition)

(X1 : Y1 : Z1)⊕ (X2 : Y2 : Z2) = (X3 : Y3 : Z3), where:

X3 = (X2Z1 − X1Z2)
[
(Y2Z1 − Y1Z2)Z1Z2

− (X2Z1 − X1Z2)3 − 2(X2Z1 − X1Z2)X1Z2

]
,

Y3 = (Y2Z1 − Y1Z2)
[
3(X2Z1 − X1Z2)X1Z2 − (Y2Z1 − Y1Z2)Z1Z2

+ (X2Z1 − X1Z2)3
]
− (X2Z1 − X1Z2)3Y1Z2,

Z3 = (X2Z1 − X1Z2)3Z1Z2.

But:
P = Q
P = O
Q = O

 =⇒ X3 = Y3 = Z3 = 0 (not in P2!)
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Implementation (Homogeneous doubling)

[2](X : Y : Z ) = (X3 : Y3 : Z3), where

X3 = 2
[
(aZ 2 + 3X 2)2 − 8XY 2Z

]
YZ ,

Y3 = (aZ 2 + 3X 2)
[
12XY 2Z − (aZ 2 + 3X 2)2

]
− 8Y 4Z 2,

Z3 = 8Y 3Z 3.

But: P = O =⇒ X3 = Y3 = Z3 = 0 (not in P2!)
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Exceptional cases

I Curves implemented using formulas with exceptional cases
I Handled by if-statements:

I Code complexity
I Bugs
I Non-time-constant
I Potential vulnerabilities
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Curve model

I Problems appear for curves in short Weierstrass form
I Can deal with the exceptions by changing the model

I (twisted) Edwards
I (twisted) Hessian

I Not possible for prime order curves
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Prime order curves

I The example curves originally specified in the working drafts of
ANSI, versions X9.62 and X9.63 [1, 2].

I The five NIST prime curves specified in FIPS 186-4, i.e. P-192,
P-224, P-256, P-384 and P-521.

I The seven curves specified in the German brainpool standard [9],
i.e., brainpoolPXXXr1, where
XXX ∈ {160, 192, 224, 256, 320, 384, 512}.

I The eight curves specified by the UK-based company Certivox [8],
i.e., ssc-XXX, where
XXX ∈ {160, 192, 224, 256, 288, 320, 384, 512}.

I The three curves specified (in addition to the above NIST prime
curves) in the Certicom SEC 2 standard [7]. This includes
secp256k1, which is the curve used in the Bitcoin protocol.
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Complete addition formulas

Addition formulas [5]

Tuple of bihomogeneous polynomials (X3 : Y3 : Z3) such that for
all (P,Q) ∈ E × E either

1 (X3(P,Q) : Y3(P,Q) : Z3(P,Q)) = P ⊕ Q, or

2 (X3(P,Q) : Y3(P,Q) : Z3(P,Q)) = (0 : 0 : 0).

I If 2 holds for a pair (P,Q), it is called exceptional

I If 2 holds for none of the pairs (P,Q), the addition formulas
(X3 : Y3 : Z3) are called complete
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Limitations and possibilities

Known results by Bosma and Lenstra [5] for (equivalence classes
of) addition formulas of bidegree (2,2):

Theorem: over an algebraically closed field k̄ there are

always exceptional pairs

Consequence: for complete addition formulas over Fp we have

to make sure the exceptional pairs lie in

extension fields (Note that this is what is done

for Edwards curves as well)

Theorem: the set is a 3-dimensional k-vector space

Consequence: there are ≈ q3 addition formulas
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Choosing the optimal one

For a basis (A0,A1,A2) of the 3-dimensional space, every addition
law can be written as

aA0 + bA1 + cA2,

for a, b, c ∈ Fq.

Some intuitive arguments:

I Bosma and Lenstra give a basis in which almost no
cross-cancelation occurs, so simply choosing one of their basis
elements seems optimal

I One of the basis elements is the only addition law which is
complete independent of curve coefficients and base field

Choose this addition law, and heavily optimize it!
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The formulas

Complete addition formulas for odd order elliptic curves. For any
two points P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) we can
compute P + Q = (X3 : Y3 : Z3) where

X3 = (X1Y2 + X2Y1)(Y1Y2 − a(X1Z2 + X2Z1)− 3bZ1Z2)

− (Y1Z2 + Y2Z1)(aX1X2 + 3b(X1Z2 + X2Z1)− a2Z1Z2),

Y3 = (Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)(Y1Y2 − a(X1Z2 + X2Z1)− 3bZ1Z2)

+ (3X1X2 + aZ1Z2)(aX1X2 + 3b(X1Z2 + X2Z1)− a2Z1Z2),

Z3 = (Y1Z2 + Y2Z1)(Y1Y2 + a(X1Z2 + X2Z1) + 3bZ1Z2)

+ (X1Y2 + X2Y1)(3X1X2 + aZ1Z2).

Exceptional pairs are induced by points of order 2, which by
assumption only exist over extension fields.
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Operation count

any a:


12M + 3ma + 2m3b + 23a P ⊕ Q
11M + 3ma + 2m3b + 17a P ⊕ Q,ZQ = 1
8M + 3S + 3ma + 2m3b + 15a [2]P

a = −3:


12M + 2mb + 29a P ⊕ Q
11M + 2mb + 23a P ⊕ Q,ZQ = 1
8M + 3S + 2mb + 21a [2]P

a = 0:


12M + 2m3b + 19a P ⊕ Q
11M + 2m3b + 13a P ⊕ Q,ZQ = 1
6M + 2S + 1m3b + 9a [2]P
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A comparison

I This work (addition): 12M + 3ma + 2m3b + 23a

I This work (doubling): 8M + 3S + 3ma + 2m3b + 15a

I Bernstein and Lange [3] attempt an addition law which works
for all NIST prime curves: 26M + 8S + ...

I Brier and Joye [6] develop unified formulas, still with
exceptions: 11M + 6S + ...

I Bos et al. [4] study a complete system of two addition laws

I Chord-and-tangent Jacobian coordinates addition:
≈ 12M + 4S + ...

I Chord-and-tangent Jacobian coordinates doubling:
≈ 4M + 4S + ...
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Another comparison: OpenSSL

NIST no. of ECDH operations (per 10s) factor

curve complete incomplete slowdown

P-192 35274 47431 1.34x

P-224 24810 34313 1.38x

P-256 21853 30158 1.38x

P-384 10109 14252 1.41x

P-521 4580 6634 1.44x

Table: Number of ECDH operations in 10 seconds for the OpenSSL
implementation of the five NIST prime curves. Timings were obtained by
running the “openssl speed ecdhpXXX” command on an Intel Core
i5-5300 CPU @ 2.30GHz, averaged over 100 trials of 10s each.
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Hardware implementation

Built on top of Mongomery modular multiplier:
I Uses redundant representation, making additions very fast

– Great for our formulas, since we have many

I No distinction between multiplications and squarings

– No negative effect, unlike other formulas

I Multiplications by constants are cheap (if predefined)

– Good for us, since we have a couple

I Can use multiple multipliers

– Formulas well parallelizable, so benefit from this
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Thanks

Thanks for your attention!
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