
Pseudorandom functions in almost
constant depth from low-noise LPN

Yu Yu

Cryptologic Research Center

joint work with (John Steinberger)

Outline

• Introduction to LPN
Decisional and Computational LPN

Asymptotic hardness of LPN

Related work

(randomized) PRFs and PRGs

• The road map
Overview of the LPN-based randomized PRG in AC0 mod 2

Bernoulli noise extractor in AC0 mod 2

Bernoulli-like noise sampler in AC0
randomized PRG randomized PRF

 Conclusion and open problems

Learning Parity with Noise (LPN)

Challenger:𝑎
$
{0,1}𝑞×𝑛, 𝑥

$
{0,1}𝑛, 𝑒 Ber𝜇

𝑞
, 𝑦 ≔ 𝐴𝑥 + 𝑒

Search LPN: given 𝑎 and 𝑦, find out 𝑠

Decisional LPN: distinguish 𝑎, 𝑦 from 𝑎, 𝑈𝑞
[Blum et al.94, Katz&Shin06]: the two versions are (poly) equivalent

In fact: can use 𝑥 Ber𝜇
𝑛 instead of 𝑥

$
{0,1}𝑛

1 0 1 1 0
0 1 0 1 0
1 0 1 0 1
1 1 0 1 0
0 0 1 1 0
1 0 1 1 0
1 1 0 1 0
0 1 0 0 1

•

1
0
1
0
1

+

1
0
0
1
0
0
0
1

  =

1
0
1
1
1
0
1
0

(mod 2)

a x e y
Ber𝜇 :Bernoulli distribution

of noise rate 0 < 𝜇 <
𝟏

𝟐

Pr [Ber𝜇 = 1] = 𝜇

Pr [Ber𝜇 = 0] = 1 − 𝜇

Ber𝜇
𝑞: q-fold of Ber𝜇

Hardness of LPN

• worst-case hardness

LPN (decoding random linear code) is NP-hard.

• average-case hardness
 constant noise 𝜇 = 𝑂(1)

BKW (Blum,Kalai,Wasserman): 𝑡 = 𝑞 = 2𝑂(𝑛/ log 𝑛)

Lyubashevsky’s tradeoff: 𝑡 = 2𝑂(𝑛/ loglog 𝑛)，𝑞 = 𝑛1+𝜖

 low noise 𝜇 = 𝑛−𝑐 (for constant 0 < 𝑐 < 1)

𝑡 = 2𝑂(𝑛
1−𝑐), 𝑞 = 𝑛 + 𝑂(1)

• quantum resistance

Related Work

• public-key cryptography from LPN
CPA PKE from low-noise LPN [Alekhnovich 03]

CCA PKE from low-noise LPN [Dottling et al.12, Kiltz et al. 14]

CCA PKE from constant-noise LPN [Yu & J. Zhang C16]

• symmetric cryptography from LPN
Pseudorandom generators [Blum et al.93, Applebaum et al.09]

Authentication schemes [Hopper&Blum 01, Juels et al. 05,…]

[Kiltz et al.11, Dodis et al.12, Lyu & Masny13, Cash et al.16]

 Perfectly binding string commitment scheme [Jain et al. 12]

Pseudorandom functions from (low-noise) LPN?

This work

Main results

• Low-noise LPN implies
Polynomial-stretch pseudorandom generators (PRGs) in AC0 mod 2
AC0(mod 2)：polynomial-size, O (1) -depth circuits with unbounded fan-in ∧,∨,⊕.

Pseudorandom functions (PRFs) in AC0(mod 2)
 AC0(mod 2)：polynomial-size, 𝜔 (1) -depth circuits with unbounded fan-in ∧,∨,⊕

• More about the PRGs/PRFs:
weak seed/key of sublinear entropy & security ≈ LPN on linear size secret
uniform seed/key of size λ & security up to 2𝑂(λ/logλ)

• Technical tools:
Bernoulli noise extractor in AC0 mod 2

Rényi entropy source Bernoulli distribution
Bernoulli-like noise sampler in AC0

Uniform randomness Bernoulli-like distribution
 Security-preserving and depth-preserving domain extender for PRFs

[Razborov & Rudich 94]: good PRFs do NOT exist in AC0(mod 2)

(randomized) PRGs, PRFs and LPN

• 𝐺𝑎: {0,1}
𝑛 × {0,1}𝑚 → {0,1}𝑙 𝑛 < 𝑙 is randomized PRG if

(𝐺𝑎 𝑈𝑛 , 𝑎) ~𝑐 (𝑈𝑙 , 𝑎)

• 𝐹𝑘,𝑎: {0,1}
𝑛 × {0,1}𝑛 × {0,1}𝑚 → {0,1}𝑙 is randomized PRF if for every PPT 𝐴
| Pr 𝐴𝐹𝑘,𝑎 𝑎 = 1 − Pr 𝐴𝑅 𝑎 = 1 | = 𝑛𝑒𝑔𝑙(𝑛)

where 𝑅: {0,1}𝑚 → {0,1}𝑙 is a random function.

• Can we obtain (randomized) PRGs and weak PRFs from LPN ?

try eliminating the noise (like LWR from LWE)
𝑎1, 𝑥 ,⋯ , 𝑎𝑖 , 𝑥

𝐿(∙)
,⋯ ,

𝑎𝑞−𝑖+1, 𝑥 ,⋯ , 𝑎𝑞, 𝑥

𝐿(∙)

where 𝐿(∙) is deterministic, 𝐺𝑎 𝑥 = 𝐿 𝑎 ∙ 𝑥 , 𝐹𝑥 𝑎 = 𝐿(𝑎 ∙ 𝑥)

[Akavia et al.14]: may not work!

our approach: convert entropy source w into Bernoulli noise

Overview: LPN-based randomized PRG

• Input: (possibly weak) seed 𝑤 and public coin 𝑎

• Noise sampling: convert (almost all entropy of) 𝑤 into Bernoulli-like noise (𝑥, 𝑒)

• Output： 𝑮𝒂 𝒘 = 𝒂𝑥 + 𝒆

• Theorem: Assume that the decisional LPN is (𝑞 = 1 + 𝑂 1 𝑛, 𝑡, ε)-hard

on secret of size 𝑛 and noise rate 𝜇 = 𝑛−𝑐(0 < 𝑐 < 1),

then 𝑮𝒂 is a (𝑡 − 𝑝𝑜𝑙𝑦 𝑛 , 𝑂 ε)-hard randomized PRG in AC0 mod 2 on
weak seed 𝒘 of entropy 𝑂(𝑛1−𝑐 ∙ log 𝑛)
uniform seed 𝒘 of size 𝑂(𝑛1−𝑐 ∙ log 𝑛)

Bernoulli noise
extractor/sampler

𝒘

𝒙 = 𝒙𝟏, ⋯ , 𝒙𝒏 , 𝒆 = (𝒆𝟏, 𝒆𝟐, 𝒆𝟑, ⋯ , 𝒆𝒒)

𝒂𝒙 + 𝒆

Bernoulli Noise Extractor

• Sample Ber𝜇 𝜇 = 2
−𝑖 : output ⨀(𝑤1, ⋯ , 𝑤𝑖) = 𝑤1𝑤2⋯𝑤𝑖

• For 𝜇 = 𝑛−𝑐 (𝑖 = 𝑐log𝑛), Shannon entropy H(Ber𝜇) ≈ 𝜇log(1/𝜇)

λ random bits (λ/ 𝑖) = 𝑂(λ/log𝑛) Bernoulli bits

in theory: λ random bits λ/H(Ber𝜇) ≈ 𝑂(λ𝑛𝑐/log𝑛) Bernoulli bits

[Applebaum et al.09]: 𝑤 remains a lot of entropy given the noise sampled

• The proposal: 𝑤

⨀

ℎ1 ℎ2

⨀

ℎ3

⨀

ℎ𝑞

⨀

ℎ1, ℎ2, ⋯ , ℎ𝑞: 2-wise independent hash functions (randomized by 𝑎)

Bernoulli Noise Extractor (cont’d)

• The extractor is in AC0 (mod 2)

• Theorem (informal): Let ℎ1, ℎ2, ⋯ , ℎ𝑞 be 2-wise independent hash

functions, for any source 𝑤 of Renyi entropy λ, for any constant 0 <Δ≤ 1,

Stat-Dist (𝑎, (𝑒1, ⋯ 𝑒𝑞), 𝑎, Ber𝜇
𝑞
) < 2

1+Δ H Ber𝜇
𝑞
−λ

2 + 2−Δ2𝜇𝑞/3

• Parameters: 𝜇 = 𝑛−𝑐, set q = Ω 𝑛 , λ = 1 + 2Δ H Ber𝜇
𝑞
= Ω(𝑛1−𝑐 ∙ logn)

• PRG’s stretch:
output length

input length
=
𝑞−𝑛

λ
= 𝑛Ω(1)

• Proof: Cauchy-Schwarz + 2-wise independence + flattening Shannon entropy

like the crooked LHL [Dodis & Smith 05] Chernoff [HILL99]

An alternative: Bernoulli noise sampler

• Use uniform randomness (weak random source), and do it in AC0 (AC0 mod 2)

• The idea: take conjunction of 2𝜇𝑞 copies of random Hamming-weight-1 distributions

• The above distribution (denoted as ψ𝜇
𝑞

) need 2𝜇𝑞(log𝑞) uniform random bits

• Asymptotically optimal: for 𝜇 = 𝑛−𝑐 , 𝑞 = 𝑝𝑜𝑙𝑦(𝑛), 2𝜇𝑞log𝑞= 𝑂(H(Ber𝜇
𝑞
))

• PRG: 𝑮𝒂 𝒘 = 𝒂𝑥 + 𝒆 by sampling (𝑥, 𝑒) ψ𝜇
𝑛+𝑞

from uniform 𝑤

• Theorem: 𝑮𝒂 is a randomized PRG of seed length 𝑂(𝑛1−𝑐log𝑛) with
comparable security to the underlying standard LPN of secret size 𝑛 .

Proof. (1) computational LPN computational ψ𝜇
𝑛+𝑞

-LPN

(2) computational ψ𝜇
𝑛+𝑞

LPN decisional ψ𝜇
𝑛+𝑞

-LPN

sample-preserving reduction by [Applebaum et al.07]

0001000000000000000
0000000100000000000…

0000000000000001000

2𝜇𝑞

𝑞

bitwise OR

0001000100000001000

Randomized PRGs to PRFs

• Given randomized PRG 𝐺𝑎: {0,1}
𝑛 × {0,1}𝑚 → {0,1}𝑛

2
in AC0 mod 2

how to construct a PRF in AC0(mod 2) ?

① a PRF of input size 𝜔 log𝑛 : 𝑛-ary GGM tree of depth 𝑑 = 𝜔(1)

𝐺𝑎 (𝑘) ≝ 𝐺𝑎
0⋯00(𝑘) 𝐺𝑎

0⋯01(𝑘) ⋯𝐺𝑎
1⋯11(𝑘)

𝐹𝑘,𝑎(𝑥1⋯𝑥𝑑log𝑛) ≝ 𝐺𝑎
𝑥 𝑑−1 log𝑛+1⋯𝑥dlog𝑛

(⋯𝐺𝑎
𝑥log𝑛+1⋯𝑥2log𝑛

(𝐺𝑎
𝑥1⋯𝑥log𝑛

𝑘)⋯)

② Domain extension from {0,1}𝜔 log𝑛 to {0,1}n (w. security & depth preserved)

Generalized Levin’s trick:
𝐹′𝑘,𝑎(𝑥) ≝ 𝐹𝑘1,𝑎(ℎ1(𝑥)) ⊕ 𝐹𝑘2,𝑎(ℎ2(𝑥)) ⊕⋯⊕𝐹𝑘𝑙,𝑎(ℎ𝑙(𝑥))

universal hash functions ℎ1,⋯ , ℎ𝑙:{0,1}
n→ {0,1}𝜔 log𝑛 ， 𝑘 ≝ (𝑘1, ℎ1, ⋯ ,𝑘𝑙ℎ𝑙)

n bits n bits n bits

n blocks

Randomized PRGs to PRFs (cont’d)

Theorem [Generalized Levin’s trick]: For random functions 𝑅1,⋯ ,𝑅𝑙 : {0,1}
𝜔 𝑙𝑜𝑔𝑛

→ {0,1}𝑛 and universal hash functions ℎ1, ⋯ , ℎ𝑙:{0,1}
𝑛→ {0,1}𝜔 𝑙𝑜𝑔𝑛 , let

𝑅′(𝑥) ≝ 𝑅1(ℎ1(𝑥)) ⊕ 𝑅2(ℎ2(𝑥)) ⊕⋯⊕𝑅𝑙(ℎ𝑙(𝑥))

Then, 𝑅′ is 𝑞
𝑞

𝑛𝜔 1

𝑙
-indistinguishable from random function {0,1}𝑛→ {0,1}𝑛

for any (computationally unbounded) adversary making up to 𝑞 oracle queries.

• See [Bellare et al.99] [Maurer 02][Dottling,Schröder15] [Gazi&Tessaro15]

• Our proof: using the Patarin’s H-coefficient technique

• Security is preserved for 𝑞=𝑛𝜔 1 and 𝑙 = 𝑂(𝑛/log𝑛)

Theorem [The PRF] Assume the decisional LPN is (𝑞 = 1 + 𝑂 1 𝑛, 𝑡, ε)-hard

on secret of size 𝑛 and noise rate 𝜇 = 𝑛−𝑐(0 < 𝑐 < 1), then for any 𝜔 1 there
exists (𝑞 = 𝑛𝜔 1 , 𝑡 − 𝑝𝑜𝑙𝑦 𝑞, 𝑛 , 𝑂 𝑑𝑞ε)-hard randomized PRF 𝐹′𝑘,𝑎 in
 AC0(mod 2) of depth 𝜔 1 on any weak key 𝑘 of entropy 𝑂(𝑛1−𝑐 ∙ log 𝑛).

Conclusion and open problems

From low-noise LPN we construct:
Polynomial-stretch pseudorandom generators (PRGs) in AC0 mod 2

Pseudorandom functions (PRFs) in AC0(mod 2)
Same (actually better) 𝑡/𝜖 security than the underlying LPN

seed/key of entropy λ = 𝑛1−𝑐log𝑛 with 𝑡/𝜖 security up to 2𝑂(𝑛
1−𝑐) = 2𝑂(λ/logλ)

Query complexity 𝑞 = 𝑛𝜔(1). 𝜔(1): depth of the circuit.

• Open problems
 LPN-based PRFs in constant depth

weak PRFs in AC0 mod 2

 PRFs in TC0

More cryptomania objects from LPN?
Collision Resistant Hash Function (CRHF)

Fully Homomorphic Encryption (FHE)

Etc.

Thank you!

