Pseudorandom functions in almost constant depth from low-noise LPN

joint work with 许荣(John Steinberger)

Outline

- Introduction to LPN
 - Decisional and Computational LPN
 - ■Asymptotic hardness of LPN
 - Related work
 - ■(randomized) PRFs and PRGs
- The road map
 - Overview of the LPN-based randomized PRG in $AC_0 \pmod{2}$
 - Bernoulli noise extractor in $AC_0 \pmod{2}$
 - ■Bernoulli-like noise sampler in AC₀
 - randomized PRG \rightarrow randomized PRF
- Conclusion and open problems

Learning Parity with Noise (LPN) Challenger: $a \stackrel{\$}{\leftarrow} \{0,1\}^{q \times n}, x \stackrel{\$}{\leftarrow} \{0,1\}^n, e \leftarrow \operatorname{Ber}_{\mu}^q, y \coloneqq Ax + e$ Ber_u:Bernoulli distribution of noise rate $0 < \mu < \frac{1}{2}$ $\Pr[\operatorname{Ber}_{\mu} = 1] = \mu$ $\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ $\Pr[Ber_{\mu} = 0] = 1 - \mu$ 0 0 0 $\operatorname{Ber}_{\mu}^{q}$: q-fold of Ber_{μ} 0 1 0 1 1 (mod 2)0 1 0 0 0 0 0 0

Search LPN: given a and y, find out sDecisional LPN: distinguish (a, y) from (a, U_q) [Blum et al.94, Katz&Shin06]: the two versions are (poly) equivalent In fact: can use $x \leftarrow \text{Ber}^n_\mu$ instead of $x \xleftarrow{} \{0,1\}^n$

Hardness of LPN

worst-case hardness

LPN (decoding random linear code) is NP-hard.

• average-case hardness

• quantum resistance

Related Work

• public-key cryptography from LPN

CPA PKE from low-noise LPN [Alekhnovich 03]

- CCA PKE from low-noise LPN [Dottling et al.12, Kiltz et al. 14]
- CCA PKE from constant-noise LPN [Yu & J. Zhang C16]
- symmetric cryptography from LPN
 - Pseudorandom generators [Blum et al.93, Applebaum et al.09]
 - ➢Authentication schemes [Hopper&Blum 01, Juels et al. 05,...]

[Kiltz et al.11, Dodis et al.12, Lyu & Masny13, Cash et al.16]

Perfectly binding string commitment scheme [Jain et al. 12]

Pseudorandom functions from (low-noise) LPN?

This work

Main results

• Low-noise LPN implies

■Polynomial-stretch pseudorandom generators (PRGs) in $AC_0 \pmod{2}$ $AC_0 \pmod{2}$: polynomial-size, 0 (1) -depth circuits with unbounded fan-in \land,\lor,\oplus . ■Pseudorandom functions (PRFs) in $\widetilde{AC}_0 \pmod{2}$

 $\widetilde{AC}_0 \pmod{2}$: polynomial-size, ω (1) -depth circuits with unbounded fan-in \wedge, \vee, \oplus

[Razborov & Rudich 94]: good PRFs do NOT exist in AC₀(mod 2)

• More about the PRGs/PRFs:

weak seed/key of sublinear entropy & security \approx LPN on linear size secret uniform seed/key of size λ & security up to $2^{O(\lambda/\log\lambda)}$

- Technical tools:
 - Bernoulli noise extractor in $AC_0 \pmod{2}$

Rényi entropy source \rightarrow Bernoulli distribution

■Bernoulli-like noise sampler in AC₀

Uniform randomness \rightarrow Bernoulli-like distribution

Security-preserving and depth-preserving domain extender for PRFs

(randomized) PRGs, PRFs and LPN

• $G_a: \{0,1\}^n \times \{0,1\}^m \to \{0,1\}^l \ (n < l)$ is randomized PRG if $(G_a(U_n), a) \sim_c (U_l, a)$

• $F_{k,a}$: $\{0,1\}^n \times \{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}^l$ is **randomized PRF** if for every PPT $A | \Pr[A^{F_{k,a}}(a) = 1] - \Pr[A^R(a) = 1] | = negl(n)$

where $R: \{0,1\}^m \rightarrow \{0,1\}^l$ is a random function.

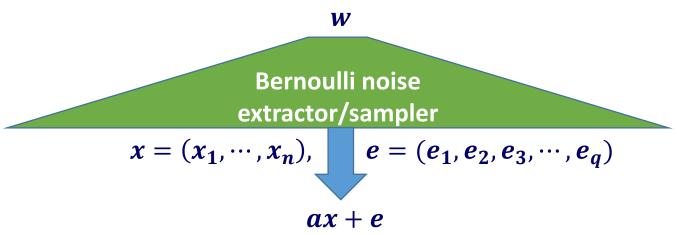
• Can we obtain (randomized) PRGs and weak PRFs from LPN ? try eliminating the noise (like LWR from LWE) $\underbrace{\langle a_1, x \rangle, \cdots, \langle a_i, x \rangle}_{L(\cdot)}, \cdots, \underbrace{\langle a_{q-i+1}, x \rangle, \cdots, \langle a_q, x \rangle}_{L(\cdot)}$

where $L(\cdot)$ is deterministic, $G_a(x) = L(a \cdot x)$, $F_x(a) = L(a \cdot x)$ [Akavia et al.14]: may not work!

our approach: convert entropy source w into Bernoulli noise

Overview: LPN-based randomized PRG

- Input: (possibly weak) seed *W* and public coin *a*
- Noise sampling: convert (almost all entropy of) w into Bernoulli-like noise (x, e)
- Output: $G_a(w) = ax + e$

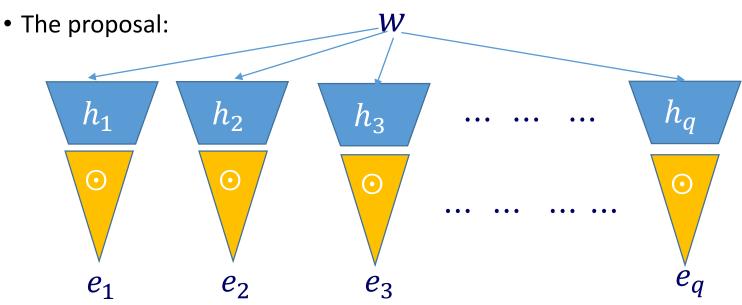


• **Theorem**: Assume that the decisional LPN is $(q = (1 + O(1))n, t, \epsilon)$ -hard on secret of size n and noise rate $\mu = n^{-c}(0 < c < 1)$,

then G_a is a $(t - poly(n), O(\varepsilon))$ -hard randomized PRG in AC₀(mod 2) on > weak seed w of entropy $O(n^{1-c} \cdot \log n)$ > uniform seed w of size $O(n^{1-c} \cdot \log n)$

Bernoulli Noise Extractor

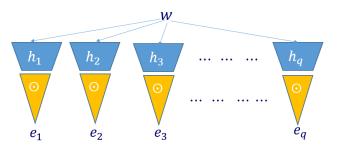
- Sample $\operatorname{Ber}_{\mu}(\mu = 2^{-i})$: output $\bigcirc (w_1, \cdots, w_i) = w_1 w_2 \cdots w_i$
- For μ = n^{-c} (i = clogn), Shannon entropy H(Ber_μ) ≈ μlog(1/μ) λ random bits → (λ/i) = O(λ/logn) Bernoulli bits
 in theory: λ random bits → λ/H(Ber_μ) ≈ O(λn^c/logn) Bernoulli bits
 [Applebaum et al.09]: w remains a lot of entropy given the noise sampled



 h_1, h_2, \dots, h_q : 2-wise independent hash functions (randomized by *a*)

Bernoulli Noise Extractor (cont'd)

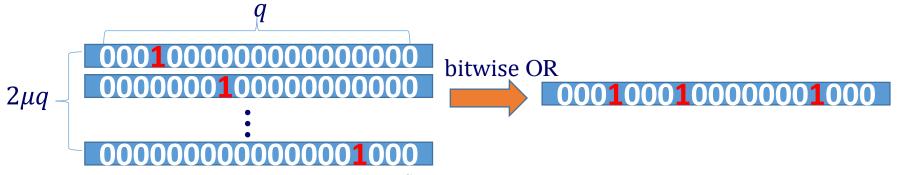
• The extractor is in ACO (mod 2)



Theorem (informal): Let h₁, h₂, …, h_q be 2-wise independent hash functions, for any source *W* of Renyi entropy λ, for any constant 0 <Δ≤ 1, Stat-Dist ((a, (e₁, … e_q)), (a, Ber_μ^q)) < 2^{(1+Δ)H(Ber_μ^q)-λ}/₂ + 2^{-Δ²μq/3}
Parameters: μ = n^{-c}, set q = Ω(n), λ = (1 + 2Δ)H(Ber_μ^q) = Ω(n^{1-c} · logn)
PRG's stretch: output length = q-n/λ = n^{Ω(1)}
Proof: Cauchy-Schwarz + 2-wise independence + flattening Shannon entropy [like the crooked LHL [Dodis & Smith 05]]

An alternative: Bernoulli noise sampler

- Use uniform randomness (weak random source), and do it in AC_0 (AC_0 (MC_0 (mod 2))
- The idea: take conjunction of $2\mu q$ copies of random Hamming-weight-1 distributions



- The above distribution (denoted as ψ^q_μ) need $2\mu q(\log q)$ uniform random bits
- Asymptotically optimal: for $\mu = n^{-c}$, q = poly(n), $2\mu q \log q = O(H(Ber_{\mu}^{q}))$
- PRG: $G_a(w) = ax + e$ by sampling $(x, e) \leftarrow \psi_{\mu}^{n+q}$ from uniform w
- Theorem: G_a is a randomized PRG of seed length $O(n^{1-c}\log n)$ with comparable security to the underlying standard LPN of secret size n.

Proof. (1) computational LPN \rightarrow computational ψ_{μ}^{n+q} -LPN

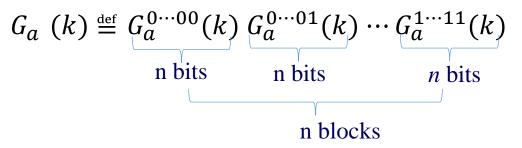
(2) computational ψ_{μ}^{n+q} LPN \rightarrow decisional ψ_{μ}^{n+q} -LPN

sample-preserving reduction by [Applebaum et al.07]

Randomized PRGs to PRFs

• Given randomized PRG $G_a: \{0,1\}^n \times \{0,1\}^m \to \{0,1\}^{n^2}$ in AC₀(mod 2) how to construct a PRF in \widetilde{AC}_0 (mod 2)?

(1) a PRF of input size $\omega(\log n)$: *n*-ary GGM tree of depth $d = \omega(1)$



 $F_{k,a}(x_1 \cdots x_{d\log n}) \stackrel{\text{def}}{=} G_a^{x_{(d-1)\log n+1} \cdots x_{d\log n}}(\cdots G_a^{x_{\log n+1} \cdots x_{2\log n}}(G_a^{x_1 \cdots x_{\log n}}(k)) \cdots)$ (2) Domain extension from $\{0,1\}^{\omega(\log n)}$ to $\{0,1\}^n$ (w. security & depth preserved) Generalized Levin's trick:

 $F'_{k,a}(x) \stackrel{\text{\tiny def}}{=} F_{k_1,a}(h_1(x)) \bigoplus F_{k_2,a}(h_2(x)) \bigoplus \cdots \bigoplus F_{k_l,a}(h_l(x))$

universal hash functions $h_1, \dots, h_l: \{0,1\}^n \to \{0,1\}^{\omega(\log n)}, k \stackrel{\text{\tiny def}}{=} (k_1, h_1, \dots, k_l h_l)$

Randomized PRGs to PRFs (cont'd)

Theorem [Generalized Levin's trick]: For random functions $R_1, \dots, R_l : \{0,1\}^{\omega(logn)}$ $\rightarrow \{0,1\}^n$ and universal hash functions $h_1, \dots, h_l : \{0,1\}^n \rightarrow \{0,1\}^{\omega(logn)}$, let $R'(x) \stackrel{\text{def}}{=} R_1(h_1(x)) \bigoplus R_2(h_2(x)) \bigoplus \dots \bigoplus R_l(h_l(x))$ Then, R' is $q\left(\frac{q}{n^{\omega(1)}}\right)^l$ -indistinguishable from random function $\{0,1\}^n \rightarrow \{0,1\}^n$ for any (computationally unbounded) adversary making up to q oracle queries.

- See [Bellare et al.99] [Maurer 02][Dottling,Schröder15] [Gazi&Tessaro15]
- Our proof: using the Patarin's H-coefficient technique
- Security is preserved for $q=n^{\omega(1)}$ and $l=O(n/\log n)$

Theorem [The PRF] Assume the decisional LPN is $(q = (1 + O(1))n, t, \varepsilon)$ -hard on secret of size n and noise rate $\mu = n^{-c}(0 < c < 1)$, then for any $\omega(1)$ there exists $(q = n^{\omega(1)}, t - poly(q, n), O(dq\varepsilon))$ -hard randomized PRF $F'_{k,a}$ in $\widetilde{AC}_0 \pmod{2}$ of depth $\omega(1)$ on any weak key k of entropy $O(n^{1-c} \cdot \log n)$.

Conclusion and open problems

From low-noise LPN we construct:

- Polynomial-stretch pseudorandom generators (PRGs) in $AC_0 \pmod{2}$ Pseudorandom functions (PRFs) in $\widetilde{AC}_0 \pmod{2}$
 - Same (actually better) t/ϵ security than the underlying LPN seed/key of entropy $\lambda = n^{1-c}\log n$ with t/ϵ security up to $2^{O(n^{1-c})} = 2^{O(\lambda/\log\lambda)}$
 - ≻Query complexity $q = n^{\omega(1)}$. $\omega(1)$: depth of the circuit.
- Open problems
 - LPN-based PRFs in constant depth
 - \succ weak PRFs in AC₀(mod 2)
 - > PRFs in TC_0
 - More cryptomania objects from LPN?
 - Collision Resistant Hash Function (CRHF)
 - Fully Homomorphic Encryption (FHE)
 - ≻ Etc.

Thank you!