On the Impossibility of Tight Cryptographic Reductions

Christoph Bader, <u>Tibor Jager</u>, Yong Li, Sven Schäge Ruhr-University Bochum

EUROCRYPT 2016

"Tight" Cryptographic Reductions

1. Define a security model

"Tight" Cryptographic Reductions

- 1. Define a **security model**
- 2. Prove: efficient **adversary A** implies efficient algorithm **R** that solves a **"hard" problem P**

"Tight" Cryptographic Reductions

- 1. Define a **security model**
- 2. Prove: efficient **adversary A** implies efficient algorithm **R** that solves a **"hard" problem P**

Reduction R is **tight**, if t_R≈t_A and succ_R≈succ_A

Why is tight security interesting?

- Do schemes with **tight security exist**?
 - Inherent tightness lower bounds?

Why is tight security interesting?

- Do schemes with tight security exist?
 Inherent tightness lower bounds?
- Relevant for **theoretically-sound** selection of parameters
 - "Non-tight" reduction \Rightarrow large parameters
 - Tight reduction \Rightarrow smaller parameters

Many Tightly-Secure Cryptosystems

 Identity-based Encryption Chen, Wee (Crypto 2013) Blazy, Kiltz, Pan (Eurocrypt 2014) 	 Digital Signatures Katz-Wang (CCS 2003) Schäge (Eurocrypt 2011)
 Public-Key Encryption Bellare, Boldyreva, Micali (Eurocrypt 2000) Hofheinz, Jager (Crypto 2012) Gay, Hofheinz, Kiltz, Wee (Eurocrypt 2016) (best paper) 	 Pseudorandom Functions Naor-Reingold (FOCS 1997) Lewko-Waters (CCS 2009) Jager (ePrint 2016)
 Key Exchange Bader, Hofheinz, Jager, Kiltz, Li (TCC 2015) 	

Many Tightly-Secure Cryptosystems

 Identity-based Encryption Chen, Wee (Crypto 2013) Blazy, Kiltz, Pan (Eurocrypt 2014) 	 Digital Signatures Katz-Wang (CCS 2003) Schäge (Eurocrypt 2011)
 Public-Key Encryption Bellare, Boldyreva, Micali (Eurocrypt 2000) Hofheinz, Jager (Crypto 2012) Gay, Hofheinz, Kiltz, Wee (Eurocrypt 2016) (best paper) Key Exchange	 Pseudorandom Functions Naor-Reingold (FOCS 1997) Lewko-Waters (CCS 2009) Jager (ePrint 2016)

• Bader, Hofheinz, Jager, Kiltz, Li (TCC 2015)

Which **properties** must a cryptosystem (not) have to allow for a **tight security** proof?

(Eurocrypt 2002)

- Digital signatures
 - single-user setting
 - unique signatures**

(Eurocrypt 2002)

- Digital signatures
 - single-user setting
 - unique signatures**

Result:

If a signature scheme has **unique signatures**, then any security reduction "loses" a factor of at least 1/Q.

* see also Kakvi and Kiltz, Eurocrypt 2012
** generalized to re-randomizable signatures by Hofheinz et al., PKC 2012

(Eurocrypt 2002)

(Eurocrypt 2002)

(Eurocrypt 2002)

Coron shows:

If a signature scheme has **unique signatures**, then any reduction **R implies an algorithm M that solves P**

• In time
$$t_M \approx t_R$$

• With
$$\epsilon_{\rm M} \ge \epsilon_{\rm R} - \frac{1}{Q}$$

(Eurocrypt 2002)

Limitations of Coron's Technique

- **Restricted but reasonable** class of reductions:
 - Treat adversary A as a black-box
 - Few advanced capabilities (e.g. seq. rewinding)
- Relatively complex analysis

Limitations of Coron's Technique

- **Restricted but reasonable** class of reductions:
 - Treat adversary A as a black-box
 - Few advanced capabilities (e.g. seq. rewinding)
- Relatively complex analysis

$$\epsilon_{\mathsf{M}} \geq \epsilon_{\mathsf{R}} - \frac{1}{Q} \cdot \left(1 - \frac{Q}{|\mathsf{MsgSpace}|} \right)^{-1}$$
 "Annoying term"

- Only useful in settings where Q << |MsgSpace|
 - Acceptable for [C`02, KK`12, HJK`12]
 - Makes application to other settings difficult

• A receives N public keys

- A receives N public keys
- Q signature queries

- A receives N public keys
- Q signature queries
- Corrupt N-1 users

- A receives N public keys
- Q signature queries
- Corrupt N-1 users
- Desired: tight security in
 - Number of signatures Q
 - Number of public keys N

- A receives N public keys
- Q signature queries
- Corrupt N-1 users
- Desired: tight security in
 - Number of signatures Q
 - Number of public keys N

Single-user security \Rightarrow multi-user security

But the reduction is **not tight**, loses a factor 1/N

Applying Coron's technique to the multi-user setting

• To show that this loss is impossible to avoid:

$$\epsilon_{\mathsf{M}} \geq \epsilon_{\mathsf{R}} - \frac{1}{N}$$

Applying Coron's technique to the multi-user setting

• To show that this loss is impossible to avoid:

$$\epsilon_{\mathsf{M}} \geq \epsilon_{\mathsf{R}} - \frac{1}{N}$$

• Applying [Coron 2002], we get

$$\epsilon_{\mathsf{M}} \ge \epsilon_{\mathsf{R}} - \frac{1}{N} \cdot \left(1 - \frac{N-1}{N}\right)^{-1}$$

Applying Coron's technique to the multi-user setting

• To show that this loss is impossible to avoid:

$$\epsilon_{\mathsf{M}} \ge \epsilon_{\mathsf{R}} - \frac{1}{N}$$

• Applying [Coron 2002], we get Equal to N

$$\epsilon_{\mathsf{M}} \ge \epsilon_{\mathsf{R}} - \frac{1}{N} \cdot \left(1 - \frac{N-1}{N}\right)^{-1}$$

Trivial bound, because of the "annoying term"

Our approach

<u>Goal:</u> Prove that 1/N-loss is impossible to avoid

- 1. Define a *weaker* security definition
 - Counterintuitive: Should be more difficult to prove impossibility of tight reductions!
- 2. New meta-reduction technique
 - No "annoying term"
 - Weakness of security definitions enables
 simple and clean analysis
- 3. Generalize this technique to other primitives

Our approach

<u>Goal:</u> Prove that 1/N-loss is impossible to avoid

- 1. Define a *weaker* security definition
 - Counterintuitive: Should be more difficult to prove impossibility of tight reductions!
- 2. New meta-reduction technique
 - No "annoying term"
 - Weakness of security definitions enables
 simple and clean analysis
- 3. Generalize this technique to other primitives

Weak Multi-User Security

- A receives N public keys
- Corrupt users
- Signature queries
- <u>A has to compute sk</u>;

Weak Multi-User Security

- A receives N public keys
- Corrupt users
- Signature queries
- <u>A has to compute sk_i</u>

No tight security proof for "weak" security ⇒ No tight security proof for any "stronger" notion

Weak Multi-User Security

- A receives N public keys
- Corrupt users
- Signature queries
- <u>A has to compute sk_i</u>

No tight security proof for "weak" security ⇒ No tight security proof for any "stronger" notion Makes sense for any public-key scheme!

Our approach

<u>Goal:</u> Prove that 1/N-loss is impossible to avoid

1. Define a *weaker* security definition

- Counterintuitive: Should be more difficult to prove impossibility of tight reductions!
- 2. New meta-reduction technique
 - No "annoying term"
 - Weakness of security definitions enables
 simple and clean analysis
- 3. Generalize this technique to other primitives

Our result

- Restricted but reasonable class of reductions:
 - Use adversary A as a **black-box**
 - Few advanced capabilities (e.g. seq. rewinding)
- Relatively simple analysis

Tightness Bound: Intuition

Tightness Bound: Intuition

- Only one index j such that R can output sk_i for all i≠j
 ⇒ R not tight!
- 2. More than one $j \Rightarrow P$ not "hard"!

Tightness Bound: Intuition

- Only one index j such that R can output sk_i for all i≠j
 ⇒ R not tight!
- 2. More than one $j \Rightarrow P$ not "hard"!

1. Run R until **right after** it outputs $pk_1, ..., pk_N$, **save the state** of R

Tightness Bound: Proof Sketch (1/2)

- 1. Run R until **right after** it outputs $pk_1, ..., pk_N$, **save the state** of R
- Run R starting from this state for all j from 1 to N, until R outputs the secret keys sk_i for all i≠j

Tightness Bound: Proof Sketch (1/2)

- 1. Run R until **right after** it outputs $pk_1, ..., pk_N$, **save the state** of R
- Run R starting from this state for all j from 1 to N, until R outputs the secret keys sk_i for all i≠j

⇒ M learns **all** secret keys

Tightness Bound: Proof Sketch (2/2)

- 1. Execute R once again, starting from - -
- 2. Simulate A that chooses j uniformly random
- 3. Output sk_j

- 1. Execute R once again, starting from - -
- 2. Simulate A that chooses j uniformly random
- 3. Output sk_j

Perfect simulation of a successful adversary

Requirements on the public-key scheme

- For each pk there is only one **unique** sk (*)
- One can efficiently verify that a given sk belongs to a given pk
- Holds for **many** known constructions

Requirements on the public-key scheme

- For each pk there is only one **unique** sk (*)
- One can efficiently verify that a given sk belongs to a given pk
- Holds for **many** known constructions

Result:

A public-key scheme that satisfies the above conditions **cannot have a tight security proof** in the multi-user setting with corruptions.

Our approach

<u>Goal:</u> Prove that 1/N-loss is impossible to avoid

1. Define a *weaker* security definition

- Counterintuitive: Should be more difficult to prove impossibility of tight reductions!
- 2. New meta-reduction technique
 - No "annoying term"
 - Weakness of security definitions enables
 simple and clean analysis

3. Generalize this technique to other primitives

Goal: easy applicability

Generalization to Abstract Relations

 $x_1, ..., x_N$ j w_i for $i \neq j$ w_j

S = {(x₁, w₁), (x₂, w₂), ..., (x_N, w_N)}

Requirements on S:

- Efficient verifiability
- For each statement x, the witness w is unique (or re-randomizable)

Generalization to Abstract Relations

Requirements on S:

- Efficient verifiability
- For each statement x, the witness w is unique (or re-randomizable)

For example:

Public key crypto in the multi-user setting:
 S = {(pk₁, sk₁), (pk₂, sk₂), ..., (pk_N, sk_N)}

Generalization to Abstract Relations

Requirements on S:

- Efficient verifiability
- For each statement x, the witness w is unique (or re-randomizable)

For example:

- Public key crypto in the multi-user setting:
 S = {(pk₁, sk₁), (pk₂, sk₂), ..., (pk_N, sk_N)}
- Signatures in the single-user setting:
 S = {(m₁, s₁), (m₂, s₂), ..., (m_N, s_N)}

Summary

New techniques to prove inexistence of tight reductions

- Stronger results but simpler proof
- More **applications**
- Easy to check whether a construction can have a tight security proof
- Easy to adapt to other applications via generic "master theorem"

Summary

New techniques to prove inexistence of tight reductions

- Stronger results but simpler proof
- More **applications**
- Easy to check whether a construction can have a tight security proof
- Easy to adapt to other applications via generic "master theorem"