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Why	is	:ght	security	interes:ng?	

•  Do	schemes	with	:ght	security	exist?	
–  Inherent	:ghtness	lower	bounds?	

•  Tightness	has	impact	on	theore:cally-
sound	selec:on	of	parameters	
–  “Non-:ght“	reduc:on	=>	large	parameters	

–  Tight	reduc:on	=>	smaller	parameters	
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Many	Tightly-Secure	Cryptosystems	

7	

Digital	Signatures	
•  Katz-Wang	(CCS	2003)	
•  Schäge	(Eurocrypt	2011)	
•  ...	

Public-Key	Encryp:on	
•  Bellare,	Boldyreva,	Micali	(Eurocrypt	2000)	
•  Hoeeinz,	Jager	(Crypto	2012)	
•  Gay,	Hoeeinz,	Kiltz,	Wee	(Eurocrypt	2016)	

(best	paper)	
•  ...	

Pseudorandom	Func:ons	
•  Naor-Reingold	(FOCS	1997)	
•  Lewko-Waters	(CCS	2009)	
•  Jager	(ePrint	2016)	
•  ...	

Iden:ty-based	Encryp:on	
•  Chen,	Wee	(Crypto	2013)	
•  Blazy,	Kiltz,	Pan	(Eurocrypt	2014)	
•  ...	

Key	Exchange	
•  Bader,	Hoeeinz,	Jager,	Kiltz,	Li	(TCC	2015)		
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Which	proper:es	must	a	cryptosystem	(not)	have	
to	allow	for	a	:ght	security	proof?	



Coron‘s	Result*	(1/2)	
(Eurocrypt	2002)	
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*	see	also	Kakvi	and	Kiltz,	Eurocrypt	2012	
**	generalized	to	re-randomizable	signatures	by	Hoeeinz	et	al.,	PKC	2012	

•  Digital	signatures	
– single-user	selng	

– unique	signatures**	
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Result:	
If	a	signature	scheme	has	unique	signatures,	then	any	
security	reduc:on	“loses”	a	factor	of	at	least	1/Q.	

*	see	also	Kakvi	and	Kiltz,	Eurocrypt	2012	
**	generalized	to	re-randomizable	signatures	by	Hoeeinz	et	al.,	PKC	2012	
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Coron	shows:	
If	a	signature	scheme	has	unique	signatures,	then	
any	reduc:on	R	implies	an	algorithm	M	that	solves	P	
•  In	:me	tM	≈	tR	

•  With	
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“Annoying	term”	



Limita:ons	of	Coron‘s	Technique	
•  Restricted	but	reasonable	class	of	reduc:ons:	
– Treat	adversary	A	as	a	black-box	
–  Few	advanced	capabili:es	(e.g.	seq.	rewinding)	

•  Rela:vely	complex	analysis	
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•  Only	useful	in	selngs	where	Q	<<	|MsgSpace|	
– Acceptable	for	[C`02,	KK`12,	HJK`12]	
– Makes	applica:on	to	other	sePngs	difficult	
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Mul:-User	Security	of	Signatures	
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•  A	receives	N	public	keys	
•  Q	signature	queries	
•  Corrupt	N-1	users	
•  Goal:	:ght	security	in	
– Number	of	signatures	Q	
– Number	of	public	keys	N	
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Single-user	security	�	mul:-user	security	

But	the	reduc:on	is	not	:ght,	loses	a	factor	1/N	



Applying	Coron’s	technique	
to	the	mul:-user	selng	
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•  To	show	that	this	loss	is	impossible	to	avoid:	

•  Applying	[Coron	2002],	we	get	
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•  To	show	that	this	loss	is	impossible	to	avoid:	

•  Applying	[Coron	2002],	we	get	
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Equal	to	N	

Trivial	bound,	because	of	the	“annoying	term”	
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Our	approach	

Goal:	Prove	that	1/N-loss	is	impossible	to	avoid	
	
1.  Define	a	weaker	security	defini:on	
–  Counterintui:ve:	Should	be	more	difficult	to	prove	
impossibility	of	:ght	reduc:ons!	

2.  New	meta-reduc:on	technique	
– No	“annoying	term”	
– Weakness	of	security	defini:ons	enables		
simple	and	clean	analysis		

3.   Generalize	this	technique	to	other	primi:ves	
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Weak	Mul:-User	Security	
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No	:ght	security	proof	for	“weak”	security	
�	

No	:ght	security	proof	for	any	“stronger”	no:on	

•  A	receives	N	public	keys	
•  Corrupt	users	
•  Signature	queries	
•  A	has	to	compute	skj	

Makes	sense	for	any	public-key	scheme!	



Our	approach	

Goal:	Prove	that	1/N-loss	is	impossible	to	avoid	
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Our	result	

•  Restricted	but	reasonable	class	of	reduc:ons:	
– Use	adversary	A	as	a	black-box	
– Few	advanced	capabili:es	(e.g.	seq.	rewinding)	

•  Rela:vely	simple	analysis	
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Tightness	Bound:	Intui:on	
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Tightness	Bound:	Proof	Sketch	(1/2)	
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1.  Run	R	un:l	right	a[er	it	outputs	pk1,	...,	pkN,	
save	the	state	of	R	

2.  Run	R	star:ng	from	this	state	for	all	j	from	1	to	N,	
un:l	R	outputs	the	secret	keys	ski	for	all	i≠j	
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Tightness	Bound:	Proof	Sketch	(2/2)	
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Tightness	Bound:	Proof	Sketch	(2/2)	
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Perfect	simula:on	of	a	successful	adversary	



Requirements	on	the	
public-key	scheme	

•  For	each	pk	there	is	only	one	unique	sk	(*)	
•  One	can	efficiently	verify	that	a	given	sk	
belongs	to	a	given	pk	

•  Holds	for	many	known	construc:ons	

40	
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Result:	
A	public-key	scheme	that	sa:sfies	the	above	condi:ons	
cannot	have	a	:ght	security	proof	in	the	mul:-user	
selng	with	corrup:ons.	

(*	In	the	paper:	generalized	to	re-randomizable	keys)	



Our	approach	

Goal:	Prove	that	1/N-loss	is	impossible	to	avoid	
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–  Counterintui:ve:	Should	be	more	difficult	to	prove	
impossibility	of	:ght	reduc:ons!	
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Goal:	easy	applicability	
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Generalized	experiment	

Strengthened	
versions	of	

[C02,	KK12,	HJK12]	

Mul:-user	security	
with	corrup:ons	

Security	of	
non-interac:ve	
key	exchange	

“Master	theorem”	

Special	cases	
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(or	re-randomizable)	
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Summary	

New	techniques	to	prove	inexistence	of	:ght	
reduc:ons	
•  Stronger	results	but	simpler	proof	
•  More	applica:ons	
•  Easy	to	check	whether	a	construc:on	can	
have	a	:ght	security	proof	

•  Easy	to	adapt	to	other	applica:ons	via	generic	
“master	theorem”	
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