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Why is tight security interesting?
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Do schemes with tight security exist?

— Inherent tightness lower bounds?
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* Do schemes with tight security exist? ~  ng
— Inherent tightness lower bounds? = s
* Relevant for theoretically-sound
selection of parameters
— “Non-tight” reduction = large parameters
— Tight reduction = smaller parameters




Many Tightly-Secure Cryptosystems

Identity-based Encryption
 Chen, Wee (Crypto 2013)
* Blazy, Kiltz, Pan (Eurocrypt 2014)

Digital Signatures
* Katz-Wang (CCS 2003)
* Schage (Eurocrypt 2011)

Public-Key Encryption

* Bellare, Boldyreva, Micali (Eurocrypt 2000)

* Hofheinz, Jager (Crypto 2012)

* Gay, Hofheinz, Kiltz, Wee (Eurocrypt 2016)
(best paper)

Pseudorandom Functions

* Naor-Reingold (FOCS 1997)
* Lewko-Waters (CCS 2009)
e Jager (ePrint 2016)

Key Exchange
e Bader, Hofheinz, Jager, Kiltz, Li (TCC 2015)




Many Tightly-Secure Cryptosystems

Identity-based Encryption
 Chen, Wee (Crypto 2013)
* Blazy, Kiltz, Pan (Eurocrypt 2014)

Digital Signatures
* Katz-Wang (CCS 2003)
* Schage (Eurocrypt 2011)

Public-Key Encryption

* Bellare, Boldyreva, Micali (Eurocrypt 2000)

* Hofheinz, Jager (Crypto 2012)

* Gay, Hofheinz, Kiltz, Wee (Eurocrypt 2016)
(best paper)

Pseudorandom Functions

* Naor-Reingold (FOCS 1997)
* Lewko-Waters (CCS 2009)
e Jager (ePrint 2016)

Key Exchange
e Bader, Hofheinz, Jager, Kiltz, Li (TCC 2015)

Which properties must a cryptosystem (not) have
to allow for a tight security proof?




Coron’s Result* (1/2)

(Eurocrypt 2002)
* Digital signatures pk
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— single-user setting m.
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— unique signatures**  Qtimes { Si__.

* see also Kakvi and Kiltz, Eurocrypt 2012
** generalized to re-randomizable signatures by Hofheinz et al., PKC 2012



Coron’s Result* (1/2)

(Eurocrypt 2002)
* Digital signatures pk
—_—
— single-user setting m.
] . . —
— unique signatures**  Qtimes { Si__.

m¥*, s*

Result:
If a signature scheme has unique signatures, then any
security reduction “loses” a factor of at least 1/Q.

* see also Kakvi and Kiltz, Eurocrypt 2012

** generalized to re-randomizable signatures by Hofheinz et al., PKC 2012 "
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Coron‘s Result (2/2)

(Eurocrypt 2002)
Meta-Reduction M Reduction R
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Coron shows:
If a signature scheme has unique signatures, then
any reduction R implies an algorithm M that solves P
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Coron‘s Result (2/2)

(Eurocrypt 2002)
Meta-Reduction M Reduction R
Instance of P
> Instance of P pk
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Simulation of
_ | Adversary A
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Coron shows:
If a signature scheme has unique signatures, then

any reduction R implies an algorithm M that solves P
“Annoying term”

* Intimety, =t;

With o~ oo

1 1 Q —1 V
Q| ( ) |Msg5pace\>

14




Limitations of Coron‘s Technique

* Restricted but reasonable class of reductions:

— Treat adversary A as a black-box

— Few advanced capabilities (e.g. seq. rewinding)
* Relatively complex analysis



Limitations of Coron‘s Technique

* Restricted but reasonable class of reductions:

— Treat adversary A as a black-box

— Few advanced capabilities (e.g. seq. rewinding)
* Relatively complex analysis

—1
€M > R — i . (1 . Q ) _/I_I “Annoying term”

Q |MsgSpace|

* Only useful in settings where Q << | MsgSpace|
— Acceptable for [C 02, KK'12, HIK'12]
— Makes application to other settings difficult



Multi-User Security of Signatures

* Areceives N public keys
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Multi-User Security of Signatures

A receives N public keys
Q signature queries
Corrupt N-1 users
Desired: tight security in

— Number of signatures Q
— Number of public keys N
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Multi-User Security of Signatures

A receives N public keys
Q signature queries
Corrupt N-1 users
Desired: tight security in

— Number of signatures Q
— Number of public keys N

Single-user security = multi-user security

But the reduction is not tight, loses a factor 1/N
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Applying Coron’s technique
to the multi-user setting

* To show that this loss is impossible to avoid:
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Applying Coron’s technique
to the multi-user setting

* To show that this loss is impossible to avoid:

1
GMZER_N

* Applying [Coron 2002], we get Equalto N
|

1 N -1\
EMZER_N. 1 — N

\

Trivial bound, because of the “annoying term”
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Our approach

Goal: Prove that 1/N-loss is impossible to avoid

1. Define a weaker security definition
— Counterintuitive: Should be more difficult to prove
impossibility of tight reductions!
2. New meta-reduction technique
— No “annoying term”

— Weakness of security definitions enables
simple and clean analysis

3. Generalize this technique to other primitives



Our approach

1. Define a weaker security definition

— Counterintuitive: Should be more difficult to prove
impossibility of tight reductions!



Weak Multi-User Security

A receives N public keys

Corrupt users
S .

A has to compute sk,

27



Weak Multi-User Security

A receives N public keys
Corrupt users

;. .

A has to compute sk,

No tight security proof for “weak” security
—

No tight security proof for any “stronger” notion
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Weak Multi-User Security

A receives N public keys
Corrupt users

;. .

A has to compute sk,

No tight security proof for “weak” security
—

No tight security proof for any “stronger” notion

Makes sense for any public-key scheme!
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Our approach

2. New meta-reduction technique
— No “annoying term”

— Weakness of security definitions enables
simple and clean analysis



Our result

1
GMZGR_N

* Restricted but reasonable class of reductions:
— Use adversary A as a black-box
— Few advanced capabilities (e.g. seq. rewinding)

e Relatively simple analysis



Tightness Bound: Intuition
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1. Only oneindex j such that R can output sk. for all i#]
= R not tight!

2. More than one j = P not “hard”!
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Tightness Bound: Proof Sketch (1/2)
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Tightness Bound: Proof Sketch (1/2)

Instance of P Meta-Reduction M
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sk, for izj i

1. Run R until right after it outputs pk,, ..., pky,
save the state of R

2. Run R starting from this state for all j from 1 to N,
until R outputs the secret keys sk. for all i#]
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Tightness Bound: Proof Sketch (1/2)

Instance of P Meta-Reduction M

™ o

~ .. Instance of P} ReductionR  pky, ..., pky N

sk, for i#j i

1. Run R until right after it outputs pk,, ..., pky,
save the state of R

2. Run R starting from this state for all j from 1 to N,
until R outputs the secret keys sk. for all i#]

= M learns all secret keys
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Tightness Bound: Proof Sketch (2/2)
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Simulation of
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) sk;

1. Execute R once again, starting from = = = -
2. Simulate A that chooses j uniformly random

3. Output sk,
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Tightness Bound: Proof Sketch (2/2)

Instance of P Meta-Reduction M
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Simulation of
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Solution P

1. Execute R once again, starting from = = = -
2. Simulate A that chooses j uniformly random
3. Output sk,

Perfect simulation of a successful adversary
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Requirements on the
public-key scheme

* For each pk there is only one unique sk (*)

* One can efficiently verify that a given sk
belongs to a given pk

* Holds for many known constructions

(* In the paper: generalized to re-randomizable keys)



Requirements on the
public-key scheme

* For each pk there is only one unique sk (*)

* One can efficiently verify that a given sk
belongs to a given pk

* Holds for many known constructions

Result:
A public-key scheme that satisfies the above conditions
cannot have a tight security proof in the multi-user

setting with corruptions.

(* In the paper: generalized to re-randomizable keys)



Our approach

3. Generalize this technique to other primitives



Goal: easy applicability

Generalized experiment

el

“Master theorem”

Multi-user security
with corruptions

Strengthened
versions of
[CO2, KK12, HIK12]

Security of
non-interactive
key exchange

— Special cases
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Generalization to Abstract Relations

S= {(Xl, Wl)' (XZI WZ)' e (XN’ WN)}

Requirements on S:
* Efficient verifiability

 For each statement x, the
withess w is unique
(or re-randomizable)
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Generalization to Abstract Relations

S= {(Xl, Wl)' (XZI WZ)' e (XN’ WN)}

Requirements on S:
* Efficient verifiability

 For each statement x, the
withess w is unique
(or re-randomizable)

For example:

* Public key crypto in the multi-user setting:
S = {(pkll Sk]_)l (kaI Skz)) cec ) (pkN) SkN)}
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Generalization to Abstract Relations

S= {(Xl, W]_)l (XZI WZ)' e (XN’ WN)}

Requirements on S:
e Efficient verifiability
 For each statement x, the

withess w is unique
(or re-randomizable)

For example:
* Public key crypto in the multi-user setting:
S ={(pk,, sky), (pk,, sk,), ..., (Pky, sky)}
* Signatures in the single-user setting:
S={(mys;), (M,,s,), ..., (My, Sy)} .
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reductions

e Stronger results but simpler proof
* More applications

* Easy to check whether a construction can
have a tight security proof

* Easy to adapt to other applications via generic
“master theorem”
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New techniques to prove inexistence of tight
reductions

e Stronger results but simpler proof
* More applications

* Easy to check whether a construction can
have a tight security proof

* Easy to adapt to other applications via generic
“master theorem”

Thank you!



