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Benôıt Libert1 San Ling2 Khoa Nguyen2 Huaxiong Wang2

1Ecole Normale Supérieure de Lyon (France)

2Nanyang Technological University (Singapore)

EUROCRYPT 2016 - Vienna, Austria



Outline

1 Introduction

2 Our Accumulator and Its Supporting Zero-Knowledge Argument

3 Applications to Ring and Group Signatures

Khoa Nguyen (NTU, Singapore) ZK arguments for lattice-based accumulators EUROCRYPT 2016 2 / 17



Cryptographic Accumulators

Accumulator [BdM’93]: a function hashing a large data set
R = {d0, . . . , dN−1} into a constant-size value u.

For any d ∈ R, there is a short witness w that d was accumulated
into u.

It is infeasible to compute a valid witness w∗ for some d∗ 6∈ R.

Numerous applications in authentication mechanisms.

In many scenarios, a ZK proof of an input-witness pair (d ,w) is
desirable.
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Previous Works

2 main families of number-theoretic accumulators: based on groups of
hidden order, or on pairings (strong RSA and strong DH
assumptions).

A 3rd family relies on Merkle trees: hardly compatible with ZK proofs.

Known methods require non-standard assumptions in groups of hidden
order [BCG’14] or non-falsifiable knowledge assumptions [BSCG+’14].

[PSTY’13]: SIS-based Merkle tree; supporting ZK proofs were not
considered.
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Our Results

First lattice-based accumulator supported by logarithmic-size ZK arguments.

We build Merkle trees from a family of SIS-based CRHF

H : D × D → D.

We demonstrate in ZK the possession of a Merkle tree path (hash chain).

Applications:

1 First lattice-based logarithmic-size ring signature.

2 First group signature without lattice trapdoors. Previous constructions
[GKV’10,CNR’12,LLLS’13,LNW’15,NZZ’15] rely on trapdoors for key
generation and/or for enabling tracing.

Being trapdoor-less: smaller parameters, shorter key and signature sizes.

User’s signing key in our scheme has size of several KBs, compared with
≈ 90 GBs in [NZZ’15].
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A Family of Lattice-Based CRHF

Let n be the security parameter, q = Õ(n), k = dlog2 qe, and m = 2nk. Define:

G =

 1 2 4 . . . 2k−1

. . .

1 2 4 . . . 2k−1

 ∈ Zn×nk
q .

For all v ∈ Zn
q : v = G · bin(v), where bin(v) ∈ {0, 1}nk - the bin. rep. of v.

Define the family H : {0, 1}nk × {0, 1}nk → {0, 1}nk as H = {hA | A ∈ Zn×m
q },

where for A = [A0|A1] with A0,A1 ∈ Zn×nk
q , and (u0,u1) ∈ {0, 1}nk × {0, 1}nk ,

hA(u0,u1) = bin
(
A0 · u0 + A1 · u1 mod q

)
∈ {0, 1}nk .

Note that hA(u0,u1) = u⇔ A0 · u0 + A1 · u1 = G · u mod q.

H is collision-resistant, assuming that SIS∞n,m,q,1 is hard.
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From CRHF to Merkle-tree-style Accumulators

u

u000 u111u011 u100u010 u101u001 u110

d0 d7d3 d4d2 d5d1 d6

u00 u11u01 u10

u0 u1

A Merkle tree with 23 = 8 leaves, which accumulates the data blocks
d0, . . . ,d7 into the value u at the root.

The value at each non-leaf node is the hash of its two children.

The brown nodes together with the bit string (j3, j2, j1) = (1, 0, 1) form a
witness to the fact that d5 is accumulated into u.
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Proving Knowledge of an Accumulated Value

j2 = 0

j3 = 1

u

w3 v3

w2v2

w1 v1

Public input: A;u = v0.

Secret input: (w`, . . . ,w1), (v`, . . . , v1), (j`, . . . , j1).

Prover’s goal: Proving that

∀ i ∈ {`− 1, . . . , 1, 0} : vi =

hA(vi+1,wi+1), if ji+1 = 0;

hA(wi+1, vi+1), if ji+1 = 1.

7 Previous protocols for SIS-based hash functions ([Lyu’08,09,12], [LNSW’13])
only prove knowledge of a hidden preimage for a given image.

? Here, we essentially need to prove knowledge of
“` hidden preimage-image pairs nested along a hidden path.”
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Transformations

For any bit b and binary vector v, define b̄ = 1− b and ext(b, v) =

 b̄ · v
b · v

.

Observe that

vi =

hA(vi+1,wi+1), if ji+1 = 0;

hA(wi+1, vi+1), if ji+1 = 1.

is equivalent to:

vi = j̄i+1 · hA(vi+1,wi+1) + ji+1 · hA(wi+1, vi+1)

⇔ j̄i+1 ·
(
A0 · vi+1 + A1 ·wi+1

)
+ ji+1 ·

(
A0 ·wi+1 + A1 · vi+1

)
= G · vi mod q

⇔ A ·

 j̄i+1 · vi+1

ji+1 · vi+1

+ A ·

 ji+1 ·wi+1

j̄i+1 ·wi+1

 = G · vi mod q

⇔ A · ext(ji+1, vi+1) + A · ext(j̄i+1,wi+1) = G · vi mod q.
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Developing Stern’s Protocol

Now, the task is to prove in ZK the possession of {ji , vi ,wi}`i=1 s.t.

∀i ∈ {`− 1, . . . , 0} : A·ext(ji+1, vi+1) + A·ext(j̄i+1,wi+1) = G·vi mod q. (1)

Stern’s protocol [Stern’96]: Main ideas

Proving in ZK the possession of a binary vector s with fixed Hamming weight t,
s.t. M · s = u mod q, for given (M,u).

1 Proving the linear equation: show that M(s+r) = u+M · r [q], for random r.

2 Proving the constraint of s: show that π(s) has weight t, for random π.

3 The first idea can be generalized to prove all ` linear equations in (1) hold.
? We’d like to prove the constraints of

vi ∈ {0, 1}nk , wi ∈ {0, 1}nk , zi = ext(ji , vi ) and yi = ext(j̄i ,wi )

using random permutations. How?
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Extensions and Permutations

Proving in ZK that vi ,wi ∈ {0, 1}nk

1 Extend to v∗i ,w
∗
i ∈ Bnk

m , res., where Bnk
m := {x ∈ {0, 1}m : wt(x) = nk}.

2 Show the verifier that π(v∗i ), φ(w∗i ) ∈ Bnk
m , where π, φ

$←− Sm.

Proving in ZK that z∗i = ext(ji , v∗i ) and y∗i = ext(j̄i ,w∗
i )

1 For b ∈ {0, 1}, for π ∈ Sm, we define the permutation Fb,π that transforms

vector z =

 z0

z1

 ∈ Z2m
q to vector Fb,π(z) =

 π(zb)

π(zb̄)

.

2 For all b, π, φ, we have:

z∗i = ext(ji , v
∗
i ) ⇐⇒ Fb,π(z∗i ) = ext( ji ⊕ b, π(v∗i ) )

y∗i = ext(j̄i ,w
∗
i ) ⇐⇒ Fb̄,φ(y∗i ) = ext( ji ⊕ b , φ(w∗i ) ).

3 ji ⊕ b perfectly hides ji , if b is a random bit.
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Summary of Our ZK Argument

Putting everything together, in the framework of Stern’s protocol, we
obtain a ZK argument system for our accumulator.

When extending the secret vectors, we also extend the public matrices
A, G (by inserting zero-columns) to preserve the equations.

To prove that the same vi is “nested” in 2 equations, we use the
same permutation at both places.

Each round has communication cost Õ(` · n) = Õ(logN · n).

Each round has soundness error 2/3, which can be made negligible by
repeating κ = ω(log n) times in parallel.
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From ZK-for-Accumulator to Ring Signatures

u

u000 u111u011 u100u010 u101u001 u110

d0

x0

d7

x7

d3

x3

d4

x4

d2

x2

d5

x5

d1

x1

d6

x6

u00 u11u01 u10

u0 u1

One more hashing layer is added: Each user picks sk = x
$←− {0, 1}m, and

outputs pk = d = bin(A · x mod q) ∈ {0, 1}nk .

Signing w.r.t. a ring R = (pk0, . . . , pkN−1) using sk = x s.t. pk ∈ R:

1 Accumulate R into u.

2 Extend the ZK-argument-for-accumulator to additionally prove
knowledge of x s.t. the value at the secret leaf is bin(A · x mod q).

3 The argument is transformed into a signature via Fiat-Shamir.
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From Ring Signatures to Group Signatures

u

u000 u111u011 u100u010 u101u001 u110

d0

x0

d7

x7

d3

x3

d4

x4

d2

x2

d5

x5

d1

x1

d6

x6

u00 u11u01 u10

u0 u1

Fix N = 2`. The manager samples x0, . . . , xN−1, computes d0, . . . ,dN−1

and the accumulator u. The sk of user j is xj and the witness for dj .

A CCA-secure encryption layer is added to enable tracing: When signing
messages, user j also encrypts the bin. rep. (j1, . . . , j`) of j .

To be trapdoor-less: Use the Naor-Yung double-encryption paradigm [NY’90]
with the multi-bit version of Regev’s LWE-based encryption [Reg’05].

The argument system for the ring signature is extended to additionally prove
that the two ciphertexts correspond to the same plaintext (j1, . . . , j`).
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Summary

We propose:

A Merkle-tree-style lattice-based accumulator, supported by short
zero-knowledge argument.

The first lattice-based RS with logarithmic-size signatures.

The first lattice-based GS without trapdoors.
Also the first logarithmic-size GS in the [BMW’03] model that does
not use a full-fledged digital signature for generating group members’
private keys.

Thank you!
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