
Constant-round Leakage-Resilient Zero-Knowledge
from Collision Resistance

Susumu Kiyoshima

NTT, Japan.

Copyright c©2016 NTT corp. All Rights Reserved. 1/24

Zero-Knowledge

I ZK⇔ ∀ verifier V∗, ∃ simulator S s.t.

S

proof V*
P proof V*

witness

No security if P's state (w and randomness) is leaked!⇒ No security against side-channel attack

Copyright c©2016 NTT corp. All Rights Reserved. 2/24

Zero-Knowledge

I ZK⇔ ∀ verifier V∗, ∃ simulator S s.t.

S

proof V*
P proof V*

witness

No security if P's state (w and randomness) is leaked!⇒ No security against side-channel attack

Copyright c©2016 NTT corp. All Rights Reserved. 2/24

Leakage-Resilient ZK (Informally)

Leakage-resilient ZK [Garg-Jain-Sahai, 2011]

≈ ZK against V∗ who obtains leakage of P's state

where V∗ who obtains leakage of P's state
= V∗ who makes any leakage queries

P V*proof

Copyright c©2016 NTT corp. All Rights Reserved. 3/24

Leakage-Resilient ZK (More Formally)

I Leakage-resilient ZK⇔ ∀V∗∃S s.t.

P proof V* S

proof V*

Copyright c©2016 NTT corp. All Rights Reserved. 4/24

Leakage-Resilient ZK (More Formally)

I Leakage-resilient ZK⇔ ∀V∗∃S s.t.

P proof V* S

proof V*

Note: S can obtain leakage of witnessw fromOw

Requirement: If V∗ obtains `-bit of leakage, S obtains at most
`-bit of leakage

Copyright c©2016 NTT corp. All Rights Reserved. 4/24

Leakage-Resilient ZK (More Formally)

I Leakage-resilient ZK⇔ ∀V∗∃S s.t.

P proof V* S

proof V*

Note: S can obtain leakage of witnessw fromOw

Requirement: If V∗ obtains `-bit of leakage, S obtains at most
`-bit of leakage

Copyright c©2016 NTT corp. All Rights Reserved. 4/24

Known Results

I [Garg-Jain-Sahai, 2011]
• Security: Relaxed notion of leakage-resilient ZK

(where S can obtain more leakage than V∗)
• # of Rounds: ≥ ω(log n)

• Assumption: Existence of one-way functions

I [Pandey, 2014]
• Security: Leakage-resilient ZK 4

• # of Rounds: Constant 4

• Assumption: DDH assumption+ Existence of CR hash

Is DDH really necessary?

Copyright c©2016 NTT corp. All Rights Reserved. 5/24

Known Results

I [Garg-Jain-Sahai, 2011]
• Security: Relaxed notion of leakage-resilient ZK

(where S can obtain more leakage than V∗)
• # of Rounds: ≥ ω(log n)

• Assumption: Existence of one-way functions

I [Pandey, 2014]
• Security: Leakage-resilient ZK 4

• # of Rounds: Constant 4

• Assumption: DDH assumption+ Existence of CR hash

Is DDH really necessary?

Copyright c©2016 NTT corp. All Rights Reserved. 5/24

Known Results

I [Garg-Jain-Sahai, 2011]
• Security: Relaxed notion of leakage-resilient ZK

(where S can obtain more leakage than V∗)
• # of Rounds: ≥ ω(log n)

• Assumption: Existence of one-way functions

I [Pandey, 2014]
• Security: Leakage-resilient ZK 4

• # of Rounds: Constant 4

• Assumption: DDH assumption+ Existence of CR hash

Is DDH really necessary?

Copyright c©2016 NTT corp. All Rights Reserved. 5/24

Our Result

Copyright c©2016 NTT corp. All Rights Reserved. 6/24

Our Result

Theorem

Assume existence of collision-resistant hash func-
tions. There exists constant-round public-coin
leakage-resilient ZK argument for NP.

Compared with previous work [Pandey, 2014]:

I Security: same

I # of Rounds: same (asymptotically)

I Assumption: DDH is no longer required!
Copyright c©2016 NTT corp. All Rights Reserved. 7/24

Our Result

Theorem

Assume existence of collision-resistant hash func-
tions. There exists constant-round public-coin
leakage-resilient ZK argument for NP.

Additional Property: Leakage-Resilient Soundness
I Soundness for P∗ who obtains unbounded amount of leakage

(Previous leakage-resilient ZK is not sound in such a setting)

I Implied by public-coin property

Copyright c©2016 NTT corp. All Rights Reserved. 7/24

Our Techniques

Copyright c©2016 NTT corp. All Rights Reserved. 8/24

Simulator's Basic Strategy

It suffices for S to simulate P's msg and randomness

I Recall: S 's goal is to simulate P's msg and leakage

I If S can simulate P's msg and randomness, then:

proof V*
S

P's rand

Copyright c©2016 NTT corp. All Rights Reserved. 9/24

Road-map to Our Leakage-Resilient ZK

Step 1. Construct a tool:
Construct instance-based equivocal com with
"nice" leakage-resilient property
I based on one-way functions
I possibly of independent interest

Step 2. Use the tool:
• Obtain leakage-resilient ZK by using it
in "nice" way

Copyright c©2016 NTT corp. All Rights Reserved. 10/24

Road-map to Our Leakage-Resilient ZK

Step 1. Construct a tool:
Construct instance-based equivocal com with
"nice" leakage-resilient property
I based on one-way functions
I possibly of independent interest

Step 2. Use the tool:
• Obtain leakage-resilient ZK by using it
in "nice" way

Copyright c©2016 NTT corp. All Rights Reserved. 10/24

Recall: Instance-Based Equivocal Com

Commitment that is based on NP instance x

I When x is false:

binding

I When x is true:
equivocal
(given)

Copyright c©2016 NTT corp. All Rights Reserved. 11/24

Our Instance-Based Equivocal Com

We convert leakage-resilient ZK of [Garg-Jain-Sahai]
to instance-based equivocal commitment

Fact 1: Leakage-resilient ZK of [Garg-Jain-Sahai] is based on
Blum's Hamiltonicity ZK

Fact 2: Blum's Hamiltonicity ZK can be converted to
instance-based equivocal commitment
[Feige-Shamir, Canetti-Lindell-Ostrovsky-Sahai, Lindell-Zarosim]

What property does OurEquivCom have?

Copyright c©2016 NTT corp. All Rights Reserved. 12/24

Our Instance-Based Equivocal Com

We convert leakage-resilient ZK of [Garg-Jain-Sahai]
to instance-based equivocal commitment

Fact 1: Leakage-resilient ZK of [Garg-Jain-Sahai] is based on
Blum's Hamiltonicity ZK

Fact 2: Blum's Hamiltonicity ZK can be converted to
instance-based equivocal commitment
[Feige-Shamir, Canetti-Lindell-Ostrovsky-Sahai, Lindell-Zarosim]

What property does OurEquivCom have?

Copyright c©2016 NTT corp. All Rights Reserved. 12/24

Nice Property of OurEquivCom

Nice Property (Informal)

Given b ∈ {0, 1}, we can simulate P's msg/rand of
commit-then-equivocate-to-b

P(x, w) V(x)

OurEquivComx(0)

open to

Use
for equivocation

commit-then-equivocate-to-b

Copyright c©2016 NTT corp. All Rights Reserved. 13/24

Road-map to Our Leakage-Resilient ZK

Step 1. Construct a tool:
Construct instance-based equivocal com with
"nice" leakage-resilient property
I based on one-way functions
I possibly of independent interest

Step 2. Use the tool:
• Obtain leakage-resilient ZK by using it
in "nice" way

Copyright c©2016 NTT corp. All Rights Reserved. 14/24

Preliminary: Barak's Preamble

Preamble stage of Barak's non-BB ZK [Barak, 2001]

I P and V obtain trapdoor statementGtd such that:

Barak's Preamble

Trapdoor statement:
- always false, for any P*
- can be true, for S

P V
Note: Actually, we use a variant that is secure in leakage setting

Copyright c©2016 NTT corp. All Rights Reserved. 15/24

Our Leakage-Resilient ZK Protocol

We consider Hamiltonicity ZK s.t.

I OurEquivComx is used to commit to graph

I statement to be proven is trapdoor statementGtd

open to or cycle
P(x, w) V(x)

Barak's Preamble

Copyright c©2016 NTT corp. All Rights Reserved. 16/24

Correctness

P can "simulate" Hamiltonicity ZK by equivocation

P(x, w) V(x)

Barak's Preamble

Use
for equivocation

false

open to or
random
 cycle

Copyright c©2016 NTT corp. All Rights Reserved. 17/24

Soundness

Any P∗ cannot proveGtd in Hamiltonicity ZK
because of its soundness

open to or cycle
P*(x) V(x)

Barak's Preamble

binding,
because G is false

false

Copyright c©2016 NTT corp. All Rights Reserved. 18/24

Warm-Up: Zero-Knowledge

S can proveGtd in Hamiltonicity ZK "honestly"

S(x) V*(x)

Barak's Preamble true

open honestly

open to or
cycle in

Simulation of P's randomness?

Copyright c©2016 NTT corp. All Rights Reserved. 19/24

Warm-Up: Zero-Knowledge

S can proveGtd in Hamiltonicity ZK "honestly"

S(x) V*(x)

Barak's Preamble true

open honestly

open to or
cycle in

Simulation of P's randomness?

Copyright c©2016 NTT corp. All Rights Reserved. 19/24

Leakage-Resilient ZK

Consider hybrid experiment such that:

V*(x)

Barak's Preamble

Phyb(x, w)
open to or

cycle in

Use
for equivocation

Copyright c©2016 NTT corp. All Rights Reserved. 20/24

Leakage-Resilient ZK

Phyb opens to π(Gtd) or cycle in π(Gtd)⇒ For each bit b in adjacent matrix of π(Gtd),
Phyb does:

• Either commit-then-equivocate-to-b
• Or commit-then-don't-open⇒ Use Nice Property! Q.E.D.

. .
Nice Property of OurEquivCom:

Given b ∈ {0, 1}, we can simulate msg and randomness of
commit-then-equivocate-to-b

Copyright c©2016 NTT corp. All Rights Reserved. 21/24

Conclusion

Copyright c©2016 NTT corp. All Rights Reserved. 22/24

Conclusion

Result

Using collision-resistant hash functions, we construct
leakage-resilient ZK argument for NP

(i.e., ZK argument that remains secure when honest party's state is leaked)

4 We assume only the existence of CR hash functions
• Previous work additionally assumes DDH assumption

4 Both ZKness and soundness hold in leakage setting
• Previous work doesn't sound under unbounded leakage

Copyright c©2016 NTT corp. All Rights Reserved. 23/24

Thank you!

Copyright c©2016 NTT corp. All Rights Reserved. 24/24

	Appendix

