

Constant-round Leakage-Resilient Zero-Knowledge from Collision Resistance

Susumu Kiyoshima

NTT, Japan.

• ZK \Leftrightarrow \forall verifier V*, \exists simulator S s.t.

• ZK \Leftrightarrow \forall verifier V*, \exists simulator \mathcal{S} s.t.

No security if P's state (w and randomness) is leaked! \Rightarrow No security against side-channel attack

Leakage-resilient ZK [Garg-Jain-Sahai, 2011] \approx ZK against V* who obtains leakage of P's state

where V^* who obtains leakage of P's state = V^* who makes any leakage queries

Leakage-Resilient ZK (More Formally)

- recilient 7K () YA/* 7 S c t
- Leakage-resilient $\mathsf{ZK} \Leftrightarrow \forall \mathsf{V}^* \exists \mathcal{S} \text{ s.t.}$

nnovative R&D by N1

Leakage-Resilient ZK (More Formally)

• Leakage-resilient $\mathsf{ZK} \Leftrightarrow \forall \mathbf{V}^* \exists \mathcal{S} \text{ s.t.}$

Note: S can obtain leakage of witness w from \mathcal{O}_w

watting BCD by N

Leakage-Resilient ZK (More Formally)

• Leakage-resilient $\mathsf{ZK} \Leftrightarrow \forall \mathbf{V}^* \exists \mathcal{S} \text{ s.t.}$

Note: S can obtain leakage of witness w from \mathcal{O}_w

Requirement: If V^* obtains ℓ -bit of leakage, S obtains at most ℓ -bit of leakage

Known Results

- ▶ [Garg-Jain-Sahai, 2011]
 - Security: Relaxed notion of leakage-resilient ZK

(where ${\cal S}$ can obtain more leakage than V^*)

- # of Rounds: $\geq \omega(\log n)$
- Assumption: Existence of one-way functions

Known Results

- [Garg-Jain-Sahai, 2011]
 - Security: Relaxed notion of leakage-resilient ZK

(where ${\cal S}$ can obtain more leakage than V^*)

- # of Rounds: $\geq \omega(\log n)$
- Assumption: Existence of one-way functions
- [Pandey, 2014]
 - Security: Leakage-resilient ZK 🗸
 - # of Rounds: Constant
 - Assumption: DDH assumption + Existence of CR hash

Known Results

- [Garg-Jain-Sahai, 2011]
 - Security: Relaxed notion of leakage-resilient ZK

(where ${\cal S}$ can obtain more leakage than V^*)

- # of Rounds: $\geq \omega(\log n)$
- Assumption: Existence of one-way functions
- [Pandey, 2014]
 - Security: Leakage-resilient ZK 🗸
 - # of Rounds: Constant
 - Assumption: DDH assumption + Existence of CR hash

Is DDH really necessary?

Our Result

Theorem

Assume existence of collision-resistant hash functions. There exists constant-round public-coin leakage-resilient ZK argument for NP.

Compared with previous work [Pandey, 2014]:

- Security: same
- # of Rounds: same (asymptotically)
- Assumption: DDH is no longer required!

Theorem

Assume existence of collision-resistant hash functions. There exists constant-round public-coin leakage-resilient ZK argument for NP.

Additional Property: Leakage-Resilient Soundness

- Soundness for P* who obtains <u>unbounded</u> amount of leakage (Previous leakage-resilient ZK is not sound in such a setting)
- Implied by public-coin property

Our Techniques

Innovative BGD by NTT

It suffices for $\mathcal S$ to simulate P's msg and <u>randomness</u>

- Recall: S's goal is to simulate P's msg and leakage
- If \mathcal{S} can simulate P's msg and randomness, then:

Road-map to Our Leakage-Resilient ZK

Step 1. Construct a tool: Construct instance-based equivocal com with "nice" leakage-resilient property

- based on one-way functions
- possibly of independent interest

Step 2. Use the tool:

 Obtain leakage-resilient ZK by using it in "nice" way

Road-map to Our Leakage-Resilient ZK

Step 1. Construct a tool: Construct instance-based equivocal com with "nice" leakage-resilient property

- based on one-way functions
- possibly of independent interest

Step 2. Use the tool:

 Obtain leakage-resilient ZK by using it in "nice" way

We convert leakage-resilient ZK of [Garg-Jain-Sahai] to instance-based equivocal commitment

- Fact 1: Leakage-resilient ZK of [Garg-Jain-Sahai] is based on Blum's Hamiltonicity ZK
- Fact 2: Blum's Hamiltonicity ZK can be converted to instance-based equivocal commitment [Feige-Shamir, Canetti-Lindell-Ostrovsky-Sahai, Lindell-Zarosim]

We convert leakage-resilient ZK of [Garg-Jain-Sahai] to instance-based equivocal commitment

- Fact 1: Leakage-resilient ZK of [Garg-Jain-Sahai] is based on Blum's Hamiltonicity ZK
- Fact 2: Blum's Hamiltonicity ZK can be converted to instance-based equivocal commitment [Feige-Shamir, Canetti-Lindell-Ostrovsky-Sahai, Lindell-Zarosim]

What property does OurEquivCom have?

Nice Property of OurEquivCom

Nice Property (Informal)

Given $b \in \{0, 1\}$, we can simulate P's msg/rand of commit-then-equivocate-to-b

commit-then-equivocate-to-b

Road-map to Our Leakage-Resilient ZK

Step 1. Construct a tool:

- Construct instance-based equivocal com with "nice" leakage-resilient property
 - based on one-way functions
 - possibly of independent interest

Step 2. Use the tool:

 Obtain leakage-resilient ZK by using it in "nice" way

Preamble stage of Barak's non-BB ZK [Barak, 2001]

• P and V obtain trapdoor statement G_{td} such that:

Note: Actually, we use a variant that is secure in leakage setting

INDIVISION RSD by NTT

We consider Hamiltonicity ZK s.t.

- OurEquivCom_x is used to commit to graph
- statement to be proven is trapdoor statement G_{td}

P can "simulate" Hamiltonicity ZK by equivocation

Any P* cannot prove G_{td} in Hamiltonicity ZK because of its soundness

${\boldsymbol{\mathcal{S}}}$ can prove G_{td} in Hamiltonicity ZK "honestly"

$\boldsymbol{\mathcal{S}}$ can prove G_{td} in Hamiltonicity ZK "honestly"

Simulation of P's randomness?

Leakage-Resilient ZK

Consider hybrid experiment such that:

- P_{hyb} opens to $\pi(G_{\text{td}})$ or cycle in $\pi(G_{\text{td}})$
- $\Rightarrow~$ For each bit b in adjacent matrix of $\pi(G_{td})$, P_{hyb} does:
 - Either commit-then-equivocate-to-b
 - Or commit-then-don't-open
- \Rightarrow Use Nice Property! Q.E.D.

Nice Property of OurEquivCom:

Given $b \in \{0, 1\}$, we can simulate msg and randomness of **commit-then-equivocate-to-**b

Conclusion

Conclusion

Result

Using collision-resistant hash functions, we construct leakage-resilient ZK argument for NP

(i.e., ZK argument that remains secure when honest party's state is leaked)

We assume only the existence of CR hash functions

Previous work additionally assumes DDH assumption

Both ZKness and soundness hold in leakage setting

Previous work doesn't sound under unbounded leakage

Thank you!

