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Introduction - Block Ciphers

m

k

cE

Differential cryptanalysis and linear cryptanalysis are among the
most famous cryptanalytic tools, and most recent block ciphers
are designed to be resistant to these two attacks.
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Introduction - How to Ensure the Security

How to “prove” the security of a scheme E?

I The security of many public-key crypto-systems can be re-
duced to hard mathematical problems;

I If E is a provable operation mode of block ciphers, the secu-
rity of E can be reduced to some other primitives, such as
ideality of the underlying block ciphers or permutations;
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Introduction - How to Ensure the Security

I However, for a dedicated block cipher, we cannot reduce the
security to another problem;

I To show a dedicated block cipher is secure, a common way
is to evaluate the security against all the known techniques,
e.g., differential, linear (hull), impossible differential crypt-
analysis.
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Introduction - Basics of Impossible Differential

I For any un-keyed function F : F2b → F2b , we can always find
some α and β such that α → β is an impossible differential
of F .

I A block cipher E(·, k) may exhibit a differential α→ β that
is a possible differential for some keys k’s while it is impos-
sible for the rest.

I In practice, such differentials are difficult to determine in
most of the cases. Generally, in a search for impossible dif-
ferentials it is difficult to guarantee the completeness.
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Introduction - Goals

I From the practical point of view, we are more interested in
the impossible differentials that are independent of the secret
keys.

I Since in most cases the non-linear transformations applied
to x can be written as S(x⊕ k), we always employ impossi-
ble differentials that are independent of the S-boxes, which
are called truncated impossible differentials, i.e., we only dif-
ferentiate whether there are differences on some bytes and
ignore the values of the differences.

I So, we will concentrate on linear layers.
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Introduction

I We already know a lot about bonding the differential/linear
probabilities, e.g., 25 active Sboxes in 4-round AES and at
most 2−6 for each active Sbox, so maximum probability is
2−150.

I The security margin of the ciphers against impossible differ-
ential and zero correlation linear cryptanalysis may not yet
be well studied and formulated. To some extend, the suc-
cess of such attacks relies mainly on the attackers’ intensive
analysis of the structures used in each individual designs.

I Despite the known 4-/4-/8-round impossible differentials for
the AES, ARIA and Camellia without FL/FL−1 layers, ef-
fort to find new impossible differentials of these ciphers that
cover more rounds has never been stopped.
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Introduction

I It is proved by Sun et al. in CRYPTO 2015 that the method
proposed by Wu and Wang can find all impossible differen-
tials if we do not investigate on the details of the nonlinear
parts.

I For given input/output differences (α, β), we can use such
method to determine whether α→ β is a possible or impos-
sible differential.

I We cannot find all the impossible differentials since the large
amount of differentials to determine.
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Preliminaries

Assume α, β ∈ Fm
2b

, then α|β is defined as the bit-wise OR opera-
tion of α and β. Let θ : F2b → F2 be defined as

θ(x) =

{
0 x = 0,

1 x 6= 0.

Then, for X = (x0, . . . , xm−1) ∈ Fm
2b

, the mode of X is defined as

χ(X) , (θ(x0), . . . , θ(xm−1)) ∈ Fm
2 .
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Preliminaries

The Hamming weight of X is defined as the number of non-zero
elements of the vector, i.e.

H(X) = #{i|xi 6= 0, i = 0, 1, . . . ,m− 1}.
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Preliminaries

I For P = (pij) ∈ Fm×m
2b

, denote by Z the integer ring, the
characteristic matrix of P is defined as P ∗ = (p∗ij) ∈ Zm×m,
where p∗ij = 0 if pij = 0 and p∗ij = 1 otherwise.

I p∗ij = 0 means the i-th output byte of the first round is
independent of the j-th input byte.
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Preliminaries - SPN Ciphers

S0 S1 S2 St 2 St 1

P

…

r-round SPN cipher: (SP )r−1S, the structure E(r) refers to ex-
actly the same, except the Sboxes can take all possible permuta-
tions.

Impossible differential now refers to that regardless of the choices
of Sboxes.
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Preliminaries

Let E(r) be an r-round iterated structure. If α→ β is a possible
differential of E(r1) and β → γ is a possible differential of E(r2).
Then α→ γ is a possible differential of E(r1+r2).

x
E1−→ y

E2−→ z
E : | | |

x⊕ α E1−→ y ⊕ β E2−→ z ⊕ γ

Note. For dedicated cipher with fixed choice of Sboxes, this
statement may not hold.
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Preliminaries

Fact 1. For a structure E , if there do not exist r-round impossible
differentials, there do not exist R-round impossible differentials
for any R ≥ r.

Fact 2. α → β is a possible differential of a single S layer ES if
and only if χ(α) = χ(β).
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Impossible Differential Cryptanalysis of SPN Structures

Lemma 1

If α1 → β1 and α2 → β2 are possible differentials of ESP , then
there always exist possible differential α→ β such that{

χ(α) = χ(α1)|χ(α2),

χ(β) = χ(β1)|χ(β2),
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Impossible Differential Cryptanalysis of SPN Structures

Proof.

Find λ ∈ F∗
2b

such that

χ

x0x1
0

∣∣∣∣∣∣
 0
y1
y2

 = χ

x0x1
0

⊕
 0
λy1
λy2

 .
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Impossible Differential Cryptanalysis of SPN Structures

Corollary 1 (Propagation from 1-round to r-round SPN)

If α1 → β1 and α2 → β2 are possible differentials of E(r)SP ,

α1|α2 → β1|β2 is also a possible differential of E(r)SP .
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Impossible Differential Cryptanalysis of SPN Structures

I A specific form: (x0, 0) → (y0, 0) and (0, x1, ) → (0, y1) are
possible differentials of ESP , where x0, x1, y0, y1 are non-zero,
then (x0, x1)→ (y0, y1) is a possible differential.

I The contrapositive: if (x0, x1) → (y0, y1) is an impossible
differential of ESP , either (x0, 0)→ (y0, 0) or (0, x1)→ (0, y1)
is an impossible differential.
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Impossible Differential Cryptanalysis of SPN Structures

Theorem 1

There exists an impossible differential of E(r)SP if and only if there

exists an impossible differential α 6→ β of E(r)SP where H(α) =
H(β) = 1.
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Impossible Differential Cryptanalysis of SPN Structures

With the help of Theorem 1, we are able to reduce the complex-
ities of checking whether there exists an impossible differential
of an SPN structure with m input/output words from O(22m) to
O(m2).
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Finding the Upper Bound

Theorem 2

Let t1 and t2 be the smallest integers such that (P ∗)t1 and (P ∗)−t2

are all-one matrices. Then there does not exist any impossible

differential E(r)SP for r ≥ t1 + t2 + 1.
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Finding the Upper Bound

Diffusion Layer of the AES:

P =



2 0 0 0 0 3 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 2 0 0 0 0 3
3 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2
0 0 0 1 2 0 0 0 0 3 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 2 0 0 0 0 3 0
0 0 0 3 1 0 0 0 0 1 0 0 0 0 2 0
0 0 0 2 3 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 2 0 0 0 0 3 0 0
0 0 3 0 0 0 0 1 1 0 0 0 0 2 0 0
0 0 2 0 0 0 0 3 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 2 3 0 0 0 0 1 0 0
0 3 0 0 0 0 1 0 0 0 0 1 2 0 0 0
0 2 0 0 0 0 3 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 2 0 0 0 0 3 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 2 3 0 0 0



.



Outline Introduction Preliminaries Impossible differential Conclusion

Finding the Upper Bound

Characteristic matrix of Diffusion Layer of the AES:

P ∗ =



1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0



.



Outline Introduction Preliminaries Impossible differential Conclusion

Finding the Upper Bound

Square of the characteristic matrix:

(P ∗)2 =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



,

so t1 = 2, similarly we can find t2 = 2, hence there does not exist
any impossible differential of EAES which covers r ≥ 5 rounds
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Finding the Upper Bound

Since we already have 4-round impossible differential of EAES ,
unless we investigate on the details of the S-boxes, with respect
to the number of rounds, we cannot find better impossible differ-
entials for the AES.
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Links Between Impossible Differential and
Zero-Correlation Linear Cryptanalysis

Due to the duality of impossible differential and zero-correlation
linear cryptanalysis, all the results on impossible differential here
apply to zero-correlation linear cryptanalysis as well.
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Conclusion

We mainly investigated the security of structures against impos-
sible differential and zero correlation linear cryptanalysis.

(1) Reduced the problem whether there exists an r-round im-
possible differential to that with the Hamming weights of
the input and output differences being 1;

(2) Given a method to upper bound the rounds of impossible
differentials and zero correlation linear hulls.
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Future Work

These results are obtained when the details of Sboxes are NOT
taken into account, what happens if we do ?

Stay tuned for

“New Insights on AES-Like SPN Ciphers” in CRYPTO 2016.
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Thanks for Your Attention!
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