New Attacks on the Concatenation and XOR Hash Combiners

Itai Dinur

Ben-Gurion University, Israel

Cryptographic Hash Functions

- A cryptographic hash function is hash function
 H:{0,1}*-> {0,1}ⁿ with strong requirements:
 - Collision resistance: It is hard to find M and M' such that M≠M' and H(M)=H(M')
 - Preimage resistance: Given an arbitrary n-bit string Y, it is hard to find any M such that H(M)=Y
 - Second preimage resistance: Given an arbitrary input M, it is hard to find M≠M' such that H(M)=H(M')

Hash Functions

		Preimage Resistance	Second Preimage Resistance
Ideal H	2 ^{n/2}	2 ⁿ	2 ⁿ

Concatenating Hash Functions

- Assume we have 2 hash function H₁ and H₂ of n bits
- We want a stronger construction
- Define a new hash function $H_1 \parallel H_2$

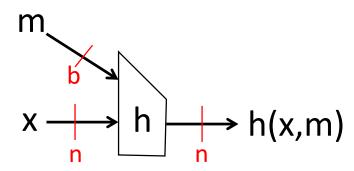


Hash Functions

	Collision Resistance	Preimage Resistance	
Ideal H	2 ^{n/2}	2 ⁿ	2 ⁿ
Ideal H ₁ H ₂	2 ⁿ	2 ²ⁿ	2 ²ⁿ

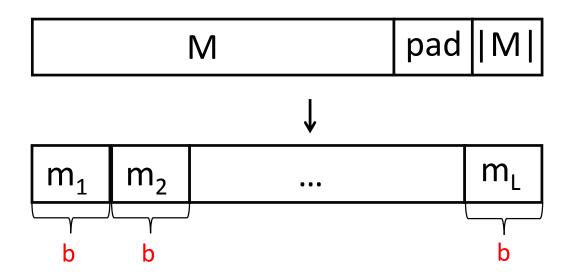
Hash Functions in Practice

- Apply a compression function h: {0,1}ⁿ x {0,1}^b -> {0,1}ⁿ in an iterated way
- A standard way of building a hash function is the Merkle-Damgard construction
 - Used in SHA-1, SHA-2,...



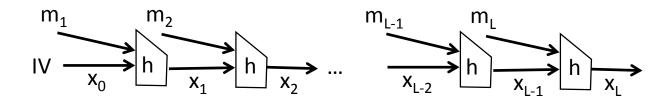
Iterated Hash Functions

- The Merkle-Damgard Construction:
 - 1) Pad the message M to a multiple of b (with 1, and as many 0's as needed and the length of the message)
 - 2) Divide the padded message into blocks m₁m₂ ...m_L



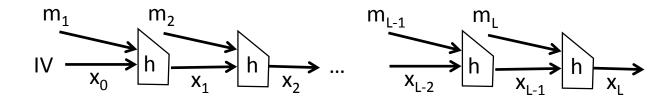
Iterated Hash Functions

- The Merkle-Damgard Construction:
 - 1) Pad the message M to a multiple of b (with 1, and as many 0's as needed and the length of the message)
 - 2) Divide the padded message into blocks m₁m₂ ...m_L
 - 3) Set $x_0 = IV$. For i=1 to L, compute $x_i = h(x_{i-1}, m_i)$
 - 4) Output x_L



In This Work

- Analyze the security of Merkle-Damgard
 - We assume that the compression function is ideal (acts as a random oracle)
- Focus on the concatenation of two Merkle-Damgard hash functions MD H₁||H₂



Hash Functions (2003)

	Collision Resistance	Preimage Resistance	Second Preimage Resistance
Ideal H	2 n/2	2 ⁿ	2 ⁿ
MDH	2 ^{n/2}	2 ⁿ	2 ⁿ

Ideal H ₁ H ₂	2 ⁿ	2 ²ⁿ	2 ²ⁿ
$MD H_1 H_2$	2 ⁿ	2 ²ⁿ	2 ²ⁿ

Hash Functions (Joux, 2004)

	Collision Resistance	Preimage Resistance	Second Preimage Resistance
Ideal H	2 ^{n/2}	2 ⁿ	2 ⁿ
MDH	2 ^{n/2}	2 ⁿ	2 ⁿ

Ideal H ₁ H ₂	2 ⁿ	2 ²ⁿ	2 ²ⁿ
$MDH_1 H_2$	20	2 2n	2 %n
	≈2 ^{n/2}	≈2 ⁿ	≈2 ⁿ

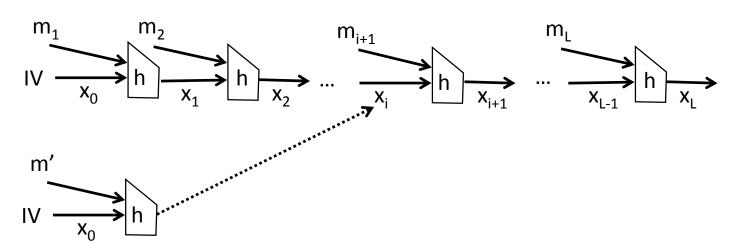
Hash Functions (Kelsey and Schneier, 2005)

	Collision Resistance	Preimage Resistance	Second Preimage Resistance
Ideal H	2 n/2	2 ⁿ	2 ⁿ
MDH	2 ^{n/2}	2 ⁿ	\(\) n

Ideal H ₁ H ₂	2 ⁿ	2 ²ⁿ	2 ²ⁿ
$MD H_1 \ H_2$	20	2 2n	2 ² n
	≈2 ^{n/2}	≈2 ⁿ	≈2 ⁿ

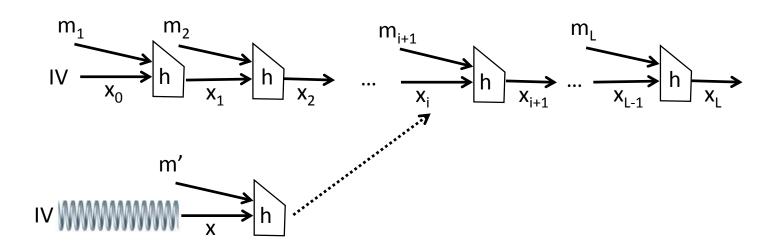
Second Preimage Attack on MD

- Given a (padded) message M=m₁||m₂||...||m_L
- We want to find M' such that H(M')=H(M)
- Start from IV and try different m' until h(IV,m')=x_i
 - Every trial succeeds with probability L/2ⁿ
 - Succeeds after 2ⁿ/L trials
- Output m'||m_{i+1}||...||m_L
- Problem: foiled by MD message length padding



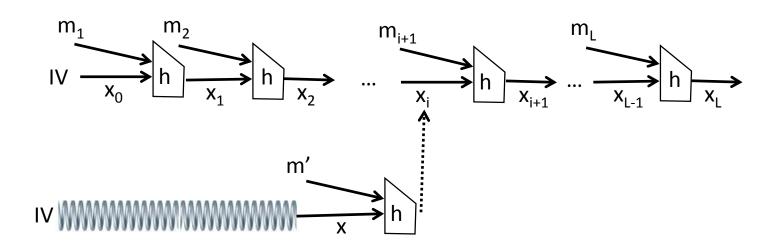
Second Preimage Attack on MD

- Solution of Kelsey and Schneier (2005):
- Build an expandable message
- Start from IV and try different m' until h(x,m')=x_i



Second Preimage Attack on MD

- Solution of Kelsey and Schneier (2005):
- Build an expandable message
- Start from IV and try different m' until h(x,m')=x_i
- Select message of appropriate length
- Total complexity: 2ⁿ/L



Hash Functions (2005)

	Collision Resistance	Preimage Resistance	Second Preimage Resistance
Ideal H	2 ^{n/2}	2 ⁿ	2 ⁿ
MDH	2 ^{n/2}	2 ⁿ	2 ⁿ /L

Ideal H ₁ H ₂	2 ⁿ	2 ²ⁿ	2 ²ⁿ
$MD H_1 \parallel H_2$	20	280	2 ² n
	≈2 ^{n/2}	≈2 ⁿ	≈2 ⁿ

Hash Functions (2015)

	Collision Resistance	Preimage Resistance	Second Preimage Resistance
Ideal H	2 ^{n/2}	2 ⁿ	2 ⁿ
MDH	2 ^{n/2}	2 ⁿ	2 ⁿ /L

Ideal H ₁ H ₂	2 ⁿ	2 ²ⁿ	2 ²ⁿ
$MD H_1 \ H_2$	20	2 ⁸ n	2 ² n
	≈2 ^{n/2}	≈2 ⁿ	≈ <mark>2</mark> n
			<<2 ⁿ
			(for long messages)

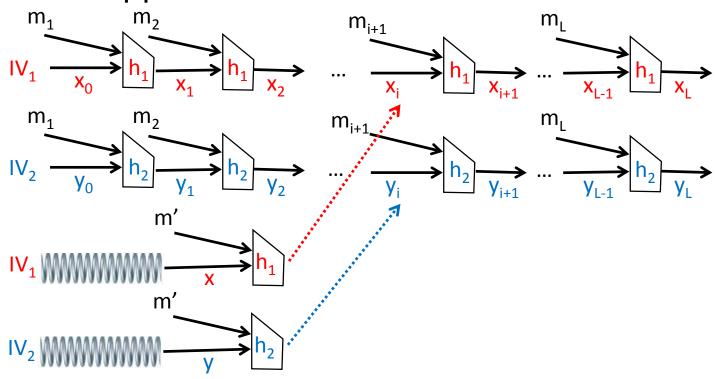
• MD $H_1 \parallel H_2$ is weaker than ideal H!

Second Preimage Attack on Concatenated MD

- A second preimage for $H_1 \parallel H_2$:
- Given M, find M' such that $H_1(M')=H_1(M)$ and $H_2(M')=H_2(M)$
- We want an algorithm more efficient than 2ⁿ

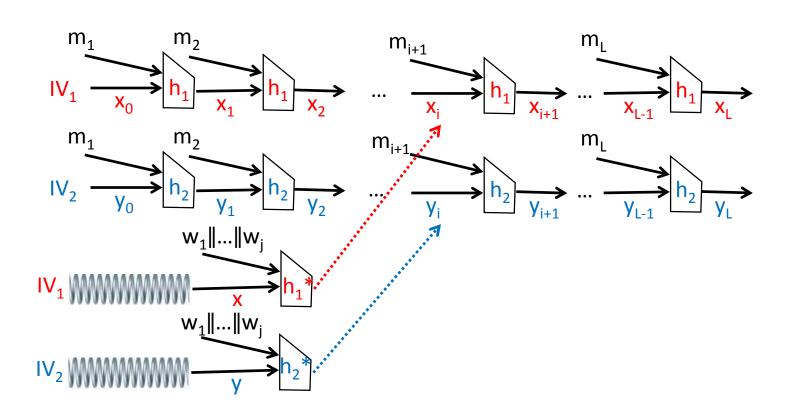
Second Preimage Attack on Concatenated MD

- Given a (padded) message M=m₁||m₂||...||m_L
- Require: $h_1(x,m')=x_i$ and $h_2(y,m')=y_i$
- Every trial succeeds with probability L/2²ⁿ
- Attack succeeds after 2²ⁿ/L > 2ⁿ trials (L<2ⁿ)
- Standard approach is inefficient



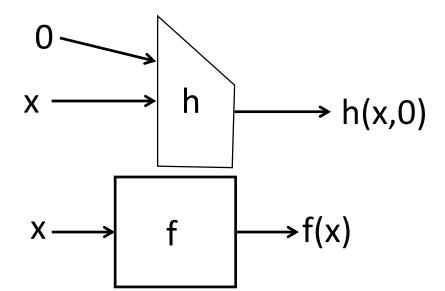
A Different Approach

- We will select a single target (x_i,y_i) that is much easier to hit with a specially crafted message w₁||...||w_i
- Define: $h^*(x,w_1||...||w_i) = h(...h(h(x,w_1),w_2)...)$
- Require: $h_1^*(x,w_1||...||w_i)=x_i$ and $h_2^*(y,w_1||...||w_i)=y_i$



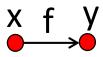
A Different Approach

- Fix to 0 the message block input to h
- Define f(x)=h(x,0)
- f(x) is a mapping from n bits to n bits
 - Such mappings are often used in cryptanalysis (e.g., Hellman's time-memory tradeoff)



A Different Approach

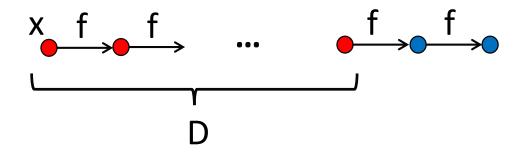
- Define a graph:
 - Nodes are the states
 - There is an edge from x to y if f(x)=y



- f can be iterated f(...f(f(x))...)
- Interested in states obtained after applying f many times

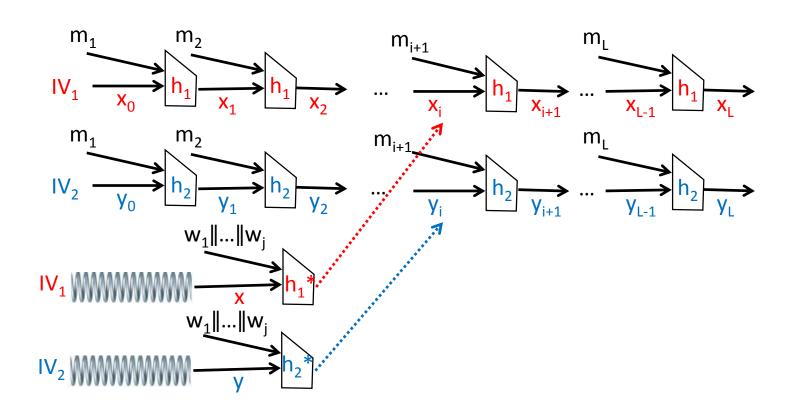
Deep Iterates

- Let D≤2^{n/2} be a parameter
- Definition: A deep iterate is a node of depth (at least) D
 in the graph



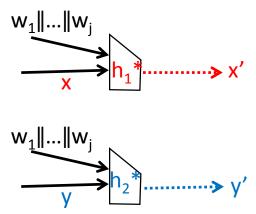
Second Preimage Attack on Concatenated MD

- Define $f_1(x)=h_1(x,0)$ and $f_2(y)=h_2(y,0)$
- Target: x_i deep iterate in f₁ and y_i deep iterate in f₂
- Require: $h_1^*(x,w_1||...||w_j)=x_i$ and $h_2^*(y,w_1||...||w_j)=y_i$

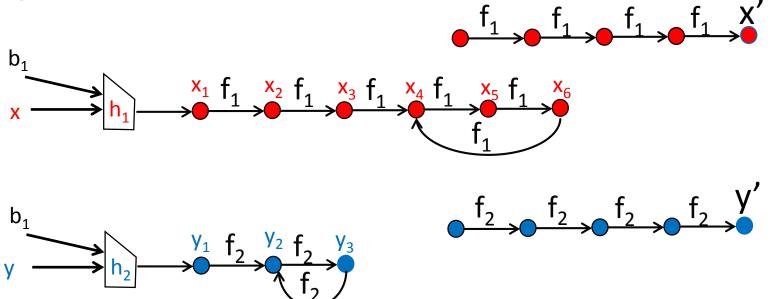


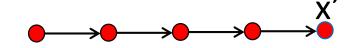
Deep Iterates

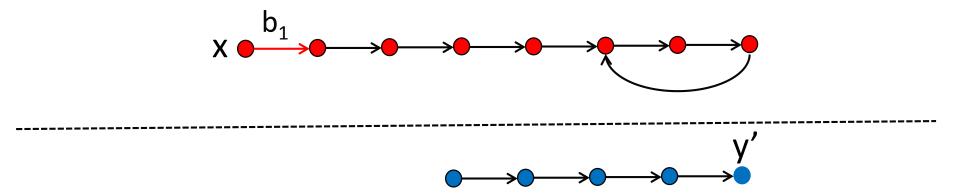
- Develop an **algorithm** that given **arbitrary states x**, **y** and a **deep iterates x**', **y**', finds **w**₁,...,**w**_j such that $h_1*(x, \mathbf{w}_1||...||\mathbf{w}_j)=x'$ and $h*(y, \mathbf{w}_1||...||\mathbf{w}_j)=y'$ with less than **2**ⁿ work
 - For arbitrary nodes x', y' this requires 2²ⁿ work!

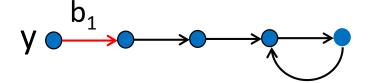


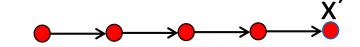
- Algorithm: for different w_1 values, evaluate messages of the form $w_1 ||0...||0$ from x and y
 - **Store** all encountered states
 - Stop on a collision with a previous evaluated state (look ahead)
- Repeat until success:
 - $h_1^*(x, w_1||0...||0)=x'$ and $h^*(y, w_1||0...||0)=y'$ with same message length

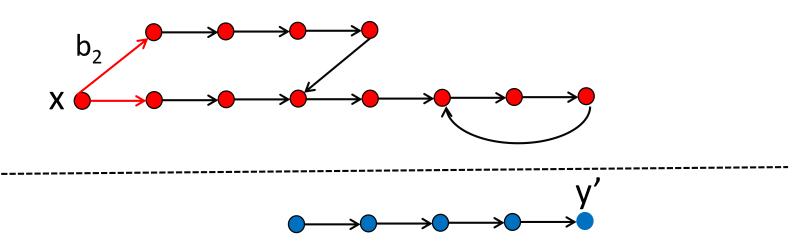


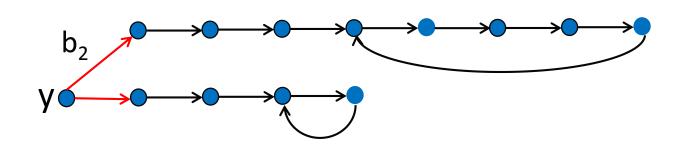


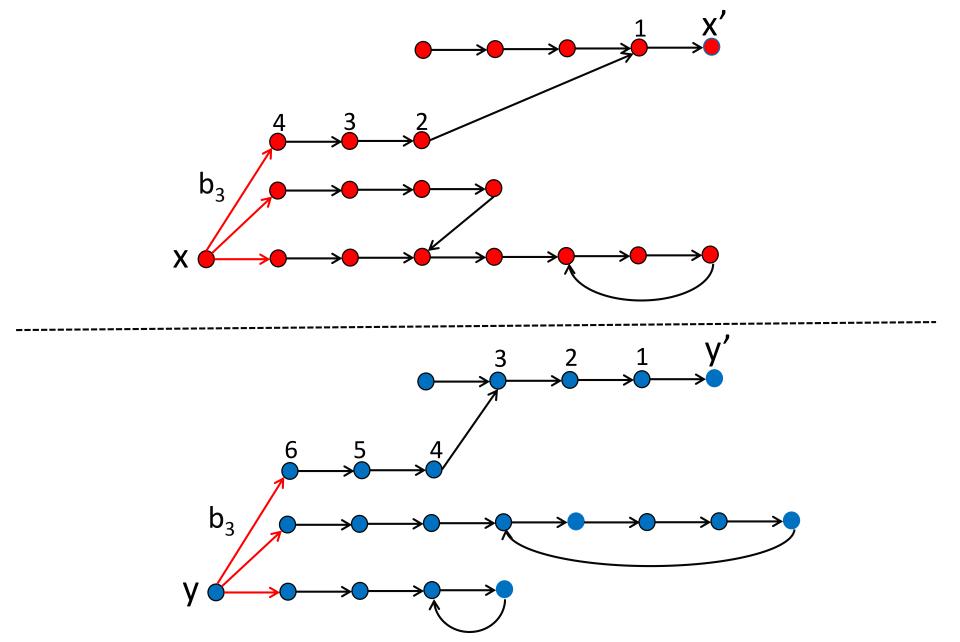


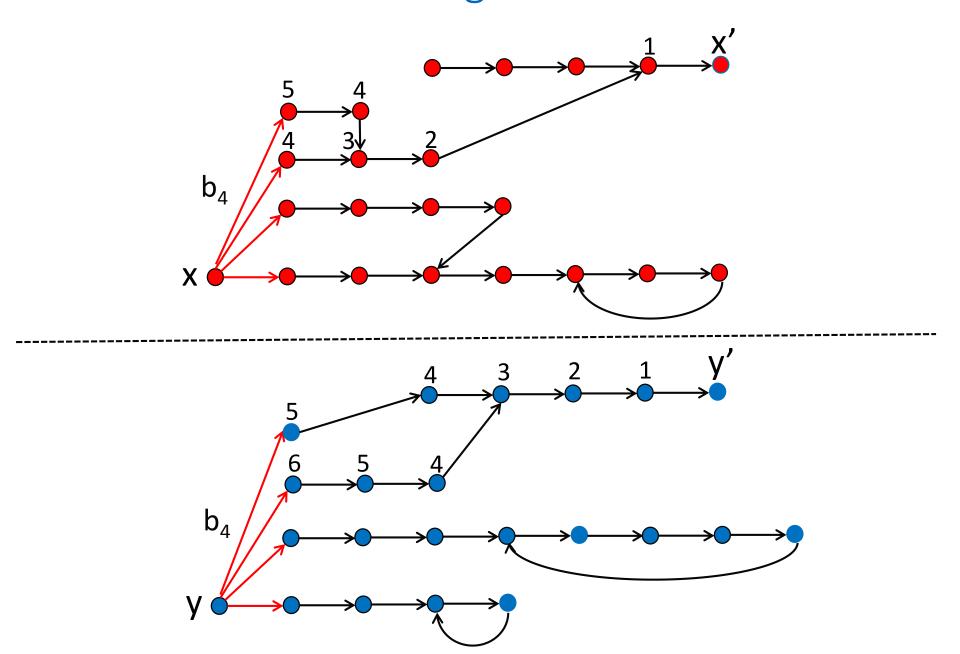




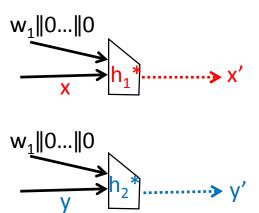








- Algorithm: Evaluate messages of the form w₁||0...||0
 from x and y until a collision with a previous
 evaluated state
- Reason for efficiency: "look ahead"
 - Related to recent attacks on HMAC



Conclusions

- We showed that concatenation of two Merkle-Damgard hash functions is weaker than a single ideal hash function
- Tradeoff between message length and complexity:
 - Faster than 2ⁿ for messages of length ≥ 2^{2n/7}
 - Optimal complexity is 2^{3n/4}
- Attacks are not practical (for hash functions used in practice n≥160)
 - Give new insight into the security of hash functions
- New application of random mappings to cryptanalysis of concatenated hash functions
 - Also give improved **preimage attack** for the **XOR** combiner of MD $H_1 \bigoplus H_2$

Thanks for your attention!