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Proofs of Knowledge (PoKs)
A fundamental crypto tool with many applications 

Identification Schemes 

Simulation-Based Security 

E-Voting Systems  

… 

Useful in cryptography when the witness is protected: Witness 
Indistinguishable (WI), Witness Hiding (WH), Zero Knowledge (ZK) 

e.g., prove knowledge of one thing OR another thing OR …
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GNP-reductionx

WI Proof of Knowledge of Hamiltonicity 
[Blum86, LapidotShamir90]

P V

Proofs of Knowledge (PoKs)
In theory In practice
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“(G, C) in RHAM”
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∑-protocol for R
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WI Proof of Knowledge of Hamiltonicity 
[Blum86, LapidotShamir90]

P V

Proofs of Knowledge (PoKs)
In theory In practice

Observation:  neither [LS90] 
nor  

[Schnorr89] need theorem+ 
witness

Observation:  [LS90] and  
[Schnorr89] need the 

theorem and witness only in 
the last round
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∑-protocol for relation R 
Completeness

SHVZK Sim(x,c)⇒

Special Soundness 

x

P(w) V
a

c

 z

a’

c

 z’
≡

x, (a c z)

x, (a c’ z’)
w: (x,w)∈ R
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R0 OR R1
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R0 OR R1

Consider the ∑-protocols 𝛴0 

and 𝛴1 for R0 and R1 and 

compile them using 
[CramerDamgardSchoenmakers94]

GNP-reduction(x0 V x1)

WI Proof of Knowledge of Hamiltonicity 
[Blum86, LS90]

P V

In theory In practice

In both cases you get 3 rounds, WI and  PoK

“(G, C) in RHAM”
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GNP-reduction(x0 V x1)

WI Proof of Knowledge of Hamiltonicity 
[Blum86, LS90]

P V
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GNP-reduction(x0 V x1)

WI Proof of Knowledge of Hamiltonicity 
[Blum86, LS90]

P V

R0 OR R1: The Gap
In theory In practice

x0 and x1 are needed already 
at the 1rd round

No need to know any theorem
 already at the 1rd round

“(G, C) in RHAM”
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Consider the ∑-protocols 𝛴0 

and 𝛴1 for R0 and R1 and 

compile them using 
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R0 OR R1: The Gap

Delayed-Input Completeness

In theory In practice

Completeness
[LS90]  [CDS94]
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Delayed-Input Completeness 
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R0 OR R1: The Gap

Delayed-Input Completeness

Adaptive-Input Proof of Knowledge

In theory In practice

Completeness 

Proof of Knowledge

[LS90]  [CDS94]
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Adaptive-Input PoK
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R0 OR R1: The Gap

Delayed-Input Completeness
Adaptive-Input Proof of Knowledge 
Adaptive-Input Witness Indistinguishable

In theory In practice

Completeness 
Proof of Knowledge
Witness Indistinguishable

[LS90]  [CDS94]
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Adaptive-Input WI

P V*
a

c
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Adaptive-Input WI
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R0 OR R1

The Gap A larger protocols using [CDS94] instead of [LS90] 
may have a worse round complexity

[GMPP16 – tomorrow], [Kiayias0Z15 – CCS15],  [BBKPV16 – eprint]…

Recently Delayed-Input completeness is widely used

e.g. [Pass – Eurocrypt 03], [KaOs – Crypto 04],  
[YuZh – Eurocrypt 07][ScVi – Eurocrypt 12]…
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Our Results

 2) Bridging the gap 

1) From PoK to Adaptive-Input PoK
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Our First Result: from PoK to 
Adaptive-Input PoK

x= gy

P*
gr

c

 z=r+cy

Extractor

c’

z’=r+c’y’x’= gy’

Issue observed in [BernhardPereiraWarinschi12] about the weak Fiat-Shamir transform 

∑-Protocols (in general) are not Adaptive-Input PoK 

18



Our Transform

x= gy

P
gr

c

 z=r+cy

From PoK to Adaptive-Input PoK 

Vgr’

 z=r’+cr
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Our Transform

x= gy

P
gr

c

 z=r+cy

From PoK to Adaptive-Input PoK 

Vgr’

 z=r’+cr

Our transform applies to the class described in  
[Cramer96, Maurer15, CramerDamgard98]

e.g. Schnorr, Guillou–Quisquater, Diffie–Hellman, Multiplication proof 
for pedersen commitments, …
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[CPS+ TCC 2016-A] This work
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Comparison: Summary

Assumption Completeness Adaptive WI Adaptive 
PoK

Online 
Efficiency

[LS90] OWP Delayed-Input k out of n 
(all adaptive) k out of n NP-

reduction

[CDS94] / / / k out of n* Entire 
protocol 

[CPSSV16] / Semi-Delayed 
Input

1 out of 2 
(1 adaptive) k out of n* Entire 

protocol 

This work DDH Delayed-Input k out of n 
(all adaptive) k out of n* ≤ CDS94
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Sim⅀(x1-b,c)
a* z*
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wb

OpenKN(com, a*)
dec

-Is dec a valid opening for a*                      
 and a1 w.r.t com?
-Is (a*, c ,z*) accepting for ⅀?
-Is (a1, c ,z1) accepting for ⅀?

P V

a1

R OR R
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 How to Construct an Efficient (K,N) 
Trapdoor Commitment

Binding Perfect
Hiding ComputationalIf T is NDH 

Binding Computational
EquivocalIf T is DH

Given T=(ga,gb,gc) Com(T,m) ⇒ dec, com

Ingredient 2: Instance dependent trapdoor commitment (IDTC) from DDH

Constructions of IDTC follow directly from known constructions of Trapdoor 
Commitments from ∑-Protocols [Dam10, HL10, DN02]
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Prove with 𝚷 that at least k of the n tuples T1, T2, …, Tn 
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e.g. k=1, n=2

P V
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 T1’=(ga1,gb1,ga1･b1)

 T2’=(ga2,gb2,gc3)

𝚷CDS94: “T1’ is DH OR T2’ is DH”

V accepts ⇔ One out of 

 T1, T2 is a non-DH tuple
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 More Results of Our Work

Our previous construction works for any (k,n)

In the paper you can also find a construction that works for different 
NP-relations (e.g. RDlog or RDH) (This construction is non-trivial ad 
uses as a sub-protocol the construction showed before) 

We give also a compiler that transform a ∑-Protocol (belonging to the 
class described in  [Cra96, Mau15, CD98]) in an Adaptive-Input PoK 

Open problem
• Is it possible to extend adaptive PoK to a larger class of ∑-

Protocols?
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