
Online/Offline OR Composition
of ∑-Protocols

Michele Ciampi
DIEM

Università di Salerno
ITALY

Giuseppe Persiano
DISA-MIS

Università di Salerno
ITALY

Alessandra Scafuro
Boston University and

Northeastern University
USA

Luisa Siniscalchi
DIEM

Università di Salerno
ITALY

Ivan Visconti
DIEM

Università di Salerno
ITALY

Proofs of Knowledge (PoKs)
A fundamental crypto tool with many applications

Identification Schemes

Simulation-Based Security

E-Voting Systems

…

Useful in cryptography when the witness is protected: Witness
Indistinguishable (WI), Witness Hiding (WH), Zero Knowledge (ZK)

e.g., prove knowledge of one thing OR another thing OR …

2

GNP-reductionx

WI Proof of Knowledge of Hamiltonicity
[Blum86, LapidotShamir90]

P V

Proofs of Knowledge (PoKs)
In theory In practice

x∈L

“(G, C) in RHAM”

m1

m2

m3

3

∑-protocol for R

x= gy
P V

gr

c

 r+cy

e.g. Discret Log [Schnorr89])

“(x, y) in RDlog”

GNP-reductionx

WI Proof of Knowledge of Hamiltonicity
[Blum86, LapidotShamir90]

P V

Proofs of Knowledge (PoKs)
In theory In practice

x∈L

“(G, C) in RHAM”

m1

m2

m3

3

∑-protocol for R

x= gy
P V

gr

c

 r+cy

e.g. Discret Log [Schnorr89])

“(x, y) in RDlog”

GNP-reductionx

WI Proof of Knowledge of Hamiltonicity
[Blum86, LapidotShamir90]

P V

Proofs of Knowledge (PoKs)
In theory In practice

Observation: neither [LS90]
nor

[Schnorr89] need theorem+
witness

Observation: [LS90] and
[Schnorr89] need the

theorem and witness only in
the last round

x∈L

“(G, C) in RHAM”

m1

m2

m3

3

∑-protocol for relation R
x

P(w) V
a

c

 z

4

∑-protocol for relation R
Completeness

x

P(w) V
a

c

 z

4

∑-protocol for relation R
Completeness

SHVZK Sim(x,c)⇒

x

P(w) V
a

c

 z

4

∑-protocol for relation R
Completeness

SHVZK Sim(x,c)⇒

x

P(w) V
a

c

 z

a’

c

 z’

4

∑-protocol for relation R
Completeness

SHVZK Sim(x,c)⇒

x

P(w) V
a

c

 z

a’

c

 z’
≡

4

∑-protocol for relation R
Completeness

SHVZK Sim(x,c)⇒

Special Soundness

x

P(w) V
a

c

 z

a’

c

 z’
≡

4

∑-protocol for relation R
Completeness

SHVZK Sim(x,c)⇒

Special Soundness

x

P(w) V
a

c

 z

a’

c

 z’
≡

x, (a c z)

x, (a c’ z’)
w: (x,w)∈ R

4

R0 OR R1

5

R0 OR R1

Consider the ∑-protocols 𝛴0

and 𝛴1 for R0 and R1 and

compile them using
[CramerDamgardSchoenmakers94]

GNP-reduction(x0 V x1)

WI Proof of Knowledge of Hamiltonicity
[Blum86, LS90]

P V

In theory In practice

In both cases you get 3 rounds, WI and PoK

“(G, C) in RHAM”

5

GNP-reduction(x0 V x1)

WI Proof of Knowledge of Hamiltonicity
[Blum86, LS90]

P V

R0 OR R1: The Gap
In theory In practice

“(G, C) in RHAM”

6

Consider the ∑-protocols 𝛴0

and 𝛴1 for R0 and R1 and

compile them using
[CramerDamgardSchoenmakers94]

GNP-reduction(x0 V x1)

WI Proof of Knowledge of Hamiltonicity
[Blum86, LS90]

P V

R0 OR R1: The Gap
In theory In practice

x0 and x1 are needed already
at the 1rd round

No need to know any theorem
 already at the 1rd round

“(G, C) in RHAM”

6

Consider the ∑-protocols 𝛴0

and 𝛴1 for R0 and R1 and

compile them using
[CramerDamgardSchoenmakers94]

R0 OR R1: The Gap

Delayed-Input Completeness

In theory In practice

Completeness
[LS90] [CDS94]

7

Delayed-Input Completeness

P Va

c

8

Delayed-Input Completeness

P Va

c

x
(w)

8

Delayed-Input Completeness

P Va

c

z

x
(w)

8

R0 OR R1: The Gap

Delayed-Input Completeness

Adaptive-Input Proof of Knowledge

In theory In practice

Completeness

Proof of Knowledge

[LS90] [CDS94]

9

Adaptive-Input PoK

P*
a

c

Extractor
x

10

Adaptive-Input PoK

P*
a

c

z

Extractor
x

10

Adaptive-Input PoK

P*
a

Extractor
x

(a,c,z)
x

10

Adaptive-Input PoK

P*
a

Extractor

c’

x’

(a,c,z)
x

10

Adaptive-Input PoK

P*
a

Extractor

c’

x’

z’

(a,c,z)
x

x’
(a,c’,z’)

10

Adaptive-Input PoK

P*
a

Extractor

c’

x’

z’

w witness for x

(a,c,z)
x

x’
(a,c’,z’)

10

R0 OR R1: The Gap

Delayed-Input Completeness
Adaptive-Input Proof of Knowledge
Adaptive-Input Witness Indistinguishable

In theory In practice

Completeness
Proof of Knowledge
Witness Indistinguishable

[LS90] [CDS94]

11

Adaptive-Input WI

P V*
a

c

12

Adaptive-Input WI

P V*
a

c

w1,w2 witnesses for x

(x,w1,w2)
(wb)

12

Adaptive-Input WI

P V*
a

c

z

w1,w2 witnesses for x

(x,w1,w2)
(wb)

12

R0 OR R1: The Gap

Delayed-Input Completeness
Adaptive-Input Proof of Knowledge
Adaptive-Input Witness Indistinguishable
Assumption: OWP

In theory In practice

Completeness
Proof of Knowledge
Witness Indistinguishable
Assumption: none

[LS90] [CDS94]

13

R0 OR R1: The Gap

Delayed-Input Completeness
Adaptive-Input Proof of Knowledge
Adaptive-Input Witness Indistinguishable
Assumption: OWP
Requires NP-reduction and gives
Computational WI

In theory In practice

Completeness
Proof of Knowledge
Witness Indistinguishable
Assumption: none
No NP-reduction and gives
Perfect WI

[LS90] [CDS94]

14

R0 OR R1: The Gap

Delayed-Input Completeness
Adaptive-Input Proof of Knowledge
Adaptive-Input Witness Indistinguishable
Assumption: OWP
Requires NP-reduction and gives
Computational WI
Applicable to All NP

In theory In practice

Completeness
Proof of Knowledge
Witness Indistinguishable
Assumption: none
No NP-reduction and gives
Perfect WI
Restricted to ∑-protocols

[LS90] [CDS94]

15

R0 OR R1

The Gap A larger protocols using [CDS94] instead of [LS90]
may have a worse round complexity

16

R0 OR R1

The Gap A larger protocols using [CDS94] instead of [LS90]
may have a worse round complexity

e.g. [Pass – Eurocrypt 03], [KaOs – Crypto 04],
[YuZh – Eurocrypt 07][ScVi – Eurocrypt 12]…

16

R0 OR R1

The Gap A larger protocols using [CDS94] instead of [LS90]
may have a worse round complexity

[GMPP16 – tomorrow], [Kiayias0Z15 – CCS15], [BBKPV16 – eprint]…

Recently Delayed-Input completeness is widely used

e.g. [Pass – Eurocrypt 03], [KaOs – Crypto 04],
[YuZh – Eurocrypt 07][ScVi – Eurocrypt 12]…

16

Our Results

 2) Bridging the gap

1) From PoK to Adaptive-Input PoK

17

Our First Result: from PoK to
Adaptive-Input PoK

x= gy

P*
gr

c

 z=r+cy

Extractor

c’

z’=r+c’y’x’= gy’

Issue observed in [BernhardPereiraWarinschi12] about the weak Fiat-Shamir transform

∑-Protocols (in general) are not Adaptive-Input PoK

18

Our Transform

x= gy

P
gr

c

 z=r+cy

From PoK to Adaptive-Input PoK

Vgr’

 z=r’+cr

19

Our Transform

x= gy

P
gr

c

 z=r+cy

From PoK to Adaptive-Input PoK

Vgr’

 z=r’+cr

19

Our Transform

x= gy

P
gr

c

 z=r+cy

From PoK to Adaptive-Input PoK

Vgr’

 z=r’+cr

Our transform applies to the class described in
[Cramer96, Maurer15, CramerDamgard98]

e.g. Schnorr, Guillou–Quisquater, Diffie–Hellman, Multiplication proof
for pedersen commitments, …

19

Our Results

 2) Bridging the gap

1) From PoK to Adaptive-Input PoK

20

R0 OR R1: Bridging the Gap
In theory In practice

[LS90] [CDS94]

[CPS+ TCC 2016-A] This work

21

R0 OR R1: Bridging the Gap
Delayed-Input Completeness

In theory In practice
Completeness

[LS90] [CDS94]

Semi-Delayed Input Completeness
[CPS+ TCC 2016-A]

Delayed-Input Completeness: All input  
∑-protocols have to be Delayed-Input

This work

21

R0 OR R1: Bridging the Gap
Delayed-Input Completeness
Adaptive-Input PoK

In theory In practice
Completeness
Proof of Knowledge

[LS90] [CDS94]

Semi-Delayed Input Completeness
Proof of Knowledge

[CPS+ TCC 2016-A]
Delayed-Input Completeness: All input  
∑-protocols have to be Delayed-Input
Proof of Knowledge

This work

21

R0 OR R1: Bridging the Gap
Delayed-Input Completeness
Adaptive-Input PoK
Adaptive-Input WI

In theory In practice
Completeness
Proof of Knowledge
Witness Indistinguishable

[LS90] [CDS94]

Semi-Delayed Input Completeness
Proof of Knowledge
Semi-Adaptive Input WI: one of two instances is
adaptively chosen by V*

[CPS+ TCC 2016-A]
Delayed-Input Completeness: All input  
∑-protocols have to be Delayed-Input
Proof of Knowledge
Adaptive-Input WI

This work

21

R0 OR R1: Bridging the Gap
Delayed-Input Completeness
Adaptive-Input PoK
Adaptive-Input WI
Assumption: OWP

In theory In practice
Completeness
Proof of Knowledge
Witness Indistinguishable
Assumption: none

[LS90] [CDS94]

Semi-Delayed Input Completeness
Proof of Knowledge
Semi-Adaptive Input WI: one of two instances is
adaptively chosen by V*
Assumption: none

[CPS+ TCC 2016-A]
Delayed-Input Completeness: All input  
∑-protocols have to be Delayed-Input
Proof of Knowledge
Adaptive-Input WI
Assumption: DDH

This work

21

R0 OR R1: Bridging the Gap
Delayed-Input Completeness
Adaptive-Input PoK
Adaptive-Input WI
Assumption: OWP
Works with multiple OR compositions

In theory In practice
Completeness
Proof of Knowledge
Witness Indistinguishable
Assumption: none
Works with multiple OR compositions

[LS90] [CDS94]

Semi-Delayed Input Completeness
Proof of Knowledge
Semi-Adaptive Input WI: one of two instances is
adaptively chosen by V*
Assumption: none
Works with only one OR composition

[CPS+ TCC 2016-A]
Delayed-Input Completeness: All input  
∑-protocols have to be Delayed-Input
Proof of Knowledge
Adaptive-Input WI
Assumption: DDH
Works with multiple OR compositions

This work

21

R0 OR R1: Bridging the Gap
Delayed-Input Completeness
Adaptive-Input PoK
Adaptive-Input WI
Assumption: OWP
Works with multiple OR compositions
Requires NP-reduction and gives
Computational WI

In theory In practice
Completeness
Proof of Knowledge
Witness Indistinguishable
Assumption: none
Works with multiple OR compositions
No NP-reduction and gives Perfect WI

[LS90] [CDS94]

Semi-Delayed Input Completeness
Proof of Knowledge
Semi-Adaptive Input WI: one of two instances is
adaptively chosen by V*
Assumption: none
Works with only one OR composition
No NP-reduction and gives Perfect WI

[CPS+ TCC 2016-A]
Delayed-Input Completeness: All input  
∑-protocols have to be Delayed-Input
Proof of Knowledge
Adaptive-Input WI
Assumption: DDH
Works with multiple OR compositions
No NP-reduction and gives Computational WI

This work

21

R0 OR R1: Bridging the Gap
Delayed-Input Completeness
Adaptive-Input PoK
Adaptive-Input WI
Assumption: OWP
Works with multiple OR compositions
Requires NP-reduction and gives
Computational WI
Applicable to All NP

In theory In practice
Completeness
Proof of Knowledge
Witness Indistinguishable
Assumption: none
Works with multiple OR compositions
No NP-reduction and gives Perfect WI
Restricted to ∑-protocols

[LS90] [CDS94]

Semi-Delayed Input Completeness
Proof of Knowledge
Semi-Adaptive Input WI: one of two instances is
adaptively chosen by V*
Assumption: none
Works with only one OR composition
No NP-reduction and gives Perfect WI
Restricted to (a large class of) ∑-protocols

[CPS+ TCC 2016-A]
Delayed-Input Completeness: All input  
∑-protocols have to be Delayed-Input
Proof of Knowledge
Adaptive-Input WI
Assumption: DDH
Works with multiple OR compositions
No NP-reduction and gives Computational WI
Restricted to (a large class of) ∑-protocols

This work

21

Comparison: Summary

Assumption Completeness Adaptive WI Adaptive
PoK

Online
Efficiency

[LS90] OWP Delayed-Input k out of n
(all adaptive) k out of n NP-

reduction

[CDS94] / / / k out of n* Entire
protocol

[CPSSV16] / Semi-Delayed
Input

1 out of 2
(1 adaptive) k out of n* Entire

protocol

This work DDH Delayed-Input k out of n
(all adaptive) k out of n* ≤ CDS94

22

Our Construction: Tools

Sen Rec
com=((com1, com2, …, comn), 𝚷)

• (K,N) Trapdoor Commitment

23

Our Construction: Tools

Sen Rec
com=((com1, com2, …, comn), 𝚷)

At least k are
perfectly
binding

• (K,N) Trapdoor Commitment

23

Our Construction: Tools

Sen Rec
com=((com1, com2, …, comn), 𝚷)

At least k are
perfectly
binding

• (K,N) Trapdoor Commitment

• ComKN(m1, m2, …, mn)
• OpenKN(com, m1

*, m2
*, …, mn-k

*)
com
dec

23

n-k commitments
can be equivocated

Our Construction: Tools

Sen Rec
com=((com1, com2, …, comn), 𝚷)

At least k are
perfectly
binding

• (K,N) Trapdoor Commitment

• ⅀: Delayed-Input ∑-protocol for the relation R

• ComKN(m1, m2, …, mn)
• OpenKN(com, m1

*, m2
*, …, mn-k

*)
com
dec

23

n-k commitments
can be equivocated

Our Construction: Tools

Sen Rec
com=((com1, com2, …, comn), 𝚷)

At least k are
perfectly
binding

• (K,N) Trapdoor Commitment

• ⅀: Delayed-Input ∑-protocol for the relation R

• Sim⅀: SHVZK simulator for ⅀

• ComKN(m1, m2, …, mn)
• OpenKN(com, m1

*, m2
*, …, mn-k

*)
com
dec

23

n-k commitments
can be equivocated

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2

P V
R OR R

24

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2 com=ComKN(a1, a2)

P V
R OR R

24

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2 com=ComKN(a1, a2)

c

P V
R OR R

24

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2 com=ComKN(a1, a2)

c

x1,x2

wb

P V
R OR R

24

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2 com=ComKN(a1, a2)

c

P⅀(xb,wb,a1, c) z1

x1,x2

wb

P V
R OR R

24

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2 com=ComKN(a1, a2)

c

P⅀(xb,wb,a1, c)

z1

x1,x2

wb

P V

a1

R OR R

24

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2 com=ComKN(a1, a2)

c

P⅀(xb,wb,a1, c)

z1

Sim⅀(x1-b,c) a* z*

x1,x2

wb

P V

a1

R OR R

24

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2 com=ComKN(a1, a2)

c

P⅀(xb,wb,a1, c)

z1

Sim⅀(x1-b,c)
a* z*

x1,x2

wb

P V

a1

R OR R

24

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2 com=ComKN(a1, a2)

c

P⅀(xb,wb,a1, c)

z1

Sim⅀(x1-b,c)
a* z*

x1,x2

wb

OpenKN(com, a*) dec

P V

a1

R OR R

24

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2 com=ComKN(a1, a2)

c

P⅀(xb,wb,a1, c)

z1

Sim⅀(x1-b,c)
a* z*

x1,x2

wb

OpenKN(com, a*)
dec

P V

a1

R OR R

24

Our Construction: Main Idea
e.g. k=1, n=2

P⅀ a1, a2 com=ComKN(a1, a2)

c

P⅀(xb,wb,a1, c)

z1

Sim⅀(x1-b,c)
a* z*

x1,x2

wb

OpenKN(com, a*)
dec

-Is dec a valid opening for a*
 and a1 w.r.t com?
-Is (a*, c ,z*) accepting for ⅀?
-Is (a1, c ,z1) accepting for ⅀?

P V

a1

R OR R

24

 How to Construct an Efficient (K,N)
Trapdoor Commitment

(ga,gb,gab) ≈ (ga,gb,gc)

Ingredient 1: DDH

25

 How to Construct an Efficient (K,N)
Trapdoor Commitment

(ga,gb,gab) ≈ (ga,gb,gc)

DH tuple

Ingredient 1: DDH

25

 How to Construct an Efficient (K,N)
Trapdoor Commitment

(ga,gb,gab) ≈ (ga,gb,gc)

DH tuple non-DH tuple

Ingredient 1: DDH

25

 How to Construct an Efficient (K,N)
Trapdoor Commitment

Binding Perfect
Hiding ComputationalIf T is NDH

Binding Computational
EquivocalIf T is DH

Given T=(ga,gb,gc) Com(T,m) ⇒ dec, com

Ingredient 2: Instance dependent trapdoor commitment (IDTC) from DDH

Constructions of IDTC follow directly from known constructions of Trapdoor
Commitments from ∑-Protocols [Dam10, HL10, DN02]

26

 How to Construct an Efficient (K,N)
Trapdoor Commitment

Sen Rec
(com1, com2, …, comn), 𝚷

27

 How to Construct an Efficient (K,N)
Trapdoor Commitment

Sen Rec
(com1, com2, …, comn), 𝚷

At least k are
perfectly
binding

27

 How to Construct an Efficient (K,N)
Trapdoor Commitment

1) Select T1, T2, …, Tn

Sen Rec
(com1, com2, …, comn), 𝚷

At least k are
perfectly
binding

27

 How to Construct an Efficient (K,N)
Trapdoor Commitment

1) Select T1, T2, …, Tn

2) Run Com(Ti,mi) ⇒ (deci,comi) for i=1,…,n and
send (com1, com2, …, comn)

Sen Rec
(com1, com2, …, comn), 𝚷

At least k are
perfectly
binding

27

 How to Construct an Efficient (K,N)
Trapdoor Commitment

1) Select T1, T2, …, Tn

2) Run Com(Ti,mi) ⇒ (deci,comi) for i=1,…,n and
send (com1, com2, …, comn)

3) Prove with 𝚷 that at least k of the n tuples
T1, T2, …, Tn are non-DH (prove with [CDS94])

Sen Rec
(com1, com2, …, comn), 𝚷

At least k are
perfectly
binding

27

 How to Construct an Efficient (K,N)
Trapdoor Commitment

1) Select T1, T2, …, Tn

2) Run Com(Ti,mi) ⇒ (deci,comi) for i=1,…,n and
send (com1, com2, …, comn)

3) Prove with 𝚷 that at least k of the n tuples
T1, T2, …, Tn are non-DH (prove with [CDS94])

Sen Rec
(com1, com2, …, comn), 𝚷

At least k are
perfectly
binding

27

Prove with 𝚷 that at least k of the n tuples T1, T2, …, Tn

are non-DH

 T1=(ga1,gb1,gc1)

 T2=(ga2,gb2,gc2)

e.g. k=1, n=2

P V

28

Prove with 𝚷 that at least k of the n tuples T1, T2, …, Tn

are non-DH

 T1=(ga1,gb1,gc1)

 T2=(ga2,gb2,gc2)

e.g. k=1, n=2

P V

 T1’=(ga1,gb1,ga1･b1)

 T2’=(ga2,gb2,gc3)

28

Prove with 𝚷 that at least k of the n tuples T1, T2, …, Tn

are non-DH

 T1=(ga1,gb1,gc1)

 T2=(ga2,gb2,gc2)

e.g. k=1, n=2

P V

 T1’=(ga1,gb1,ga1･b1)

 T2’=(ga2,gb2,gc3)

𝚷CDS94: “T1’ is DH OR T2’ is DH”

28

Prove with 𝚷 that at least k of the n tuples T1, T2, …, Tn

are non-DH

 T1=(ga1,gb1,gc1)

 T2=(ga2,gb2,gc2)

e.g. k=1, n=2

P V

 T1’=(ga1,gb1,ga1･b1)

 T2’=(ga2,gb2,gc3)

𝚷CDS94: “T1’ is DH OR T2’ is DH”

V accepts ⇔ One out of

 T1, T2 is a non-DH tuple

28

 More Results of Our Work

Our previous construction works for any (k,n)

In the paper you can also find a construction that works for different
NP-relations (e.g. RDlog or RDH) (This construction is non-trivial ad
uses as a sub-protocol the construction showed before)

We give also a compiler that transform a ∑-Protocol (belonging to the
class described in [Cra96, Mau15, CD98]) in an Adaptive-Input PoK

Open problem
• Is it possible to extend adaptive PoK to a larger class of ∑-

Protocols?

29

thanks

