
Protecting	TLS	
from	Legacy	Crypto

Karthikeyan Bhargavan
+	many,	many	others.
(INRIA,	Microsoft	Research,	LORIA,	IMDEA,
Univ of	Pennsylvania,	Univ of	Michigan,	JHU)

http://mitls.org	

Popular	cryptographic	protocols	evolve

Agility:	graceful	transition	from	old	to	new

What	can	go	wrong?	

• Downgrade	attacks that	exploit	obsolete	legacy	crypto

• FREAK	 Export-grade	512-bit	RSA [Mar’15]
• LOGJAM		 Export-grade	512-bit DH [May’15]
• SLOTH	 RSA-MD5	signatures [Jan’16]

• TLS	was	supposed	to	prevent	downgrade	attacks
• What	went	wrong? How	do	we	fix	it	in	TLS	1.3?

2016?			TLS1.3

OpenSSL,	SecureTransport,	NSS,	
SChannel,	GnuTLS,	JSSE,	PolarSSL,	…
many	bugs,	attacks,	patches	every	year

mostly	for	small	simplified	models	of	TLS

Client Server

Protocol	versions

Key	exchanges

Authentication	modes

Authenticated	Encryption	Schemes

100s	of	possible	protocol	combinations!

TLS_RSA_WITH_AES_128_CBC_SHA

RSA	Key	Transport
• RSA-PKCS#1	v1.5	encryption
• [1998]	Bleichenbacher

attack	and	fixes
• [2013]	Crypto	proof	

for	TLS-RSA
• [2016]	DROWN	attack:	

downgrade	to	SSLv2

AES-CBC	+	HMAC	
• MAC-Encode-Encrypt	Scheme
• [2002]	Vaudenay attack	
• [2011]	Crypto	proof	for	

TLS	MEE-CBC
• [2013]	Lucky	13	attack
• [2014]	Poodle	attack	on	SSLv3
• [2016]	Verified	implementation

Textbook	crypto	proofs	not	applicable	to	TLS

Theoretical	attacks	not	always	exploitable

Most	crypto	proofs	are	for	single	constructs

Many	attacks	appear	only	in	composition

Too	many	compositions	to	prove	by	hand
• We	need	automated	verification	tools	that	can	
analyze	both	protocols	and	implementations

A	verified	reference	implementation	of	TLS

Specification	and	verification	using	types

A	joint	effort	by	a	large	research	team

Triple	Handshake	Attacks [S&P	2014]
• Breaking	client	authentication	by	
composing three	different	handshake	modes

State	Machine	Attacks	(e.g.	FREAK) [S&P	2015]
• Bugs	in	the	composite	state	machines	
implemented	by	mainstream	TLS	libraries	

Logjam [CCS	2015]
• DH	group	downgrade	using	DHE_EXPORT	
SLOTH [NDSS	2016]

Downgrade	Attacks
on	Agile	Key	Exchange

Anonymous	Diffie-Hellman	(DHanon)

Man-in-the-Middle	attack	on	DHanon

Active	Network	Attacker
or	Malicious	Peer

SIGMA:	Authenticated	DH

PKI

Sign-and-MAC	the	transcript:
prevents	most	MitM attacks

SIGMA	with	Group	Negotiation

Why? backwards	
compatibility,

export	regulations,…

DH	Group	
Negotiation	

Export-Grade	512-bit	DHE	in	TLS
TLS	1.0	supported	deliberately	weakened	ciphers	to	
comply	with	export	regulations	in	1990s

EXPORT	deprecated	in	2000
but	still	supported	by	TLS	in	2015
• 8.4%	of	Top	1M	websites	in	March	2015
• Browsers	only	support	DHE,	not	DHE_EXPORT
but	will	accept	512-bit	DH	groups	for	DHE

• Protocol	flaw:	
Server’s	DHE	and	DHE_EXPORT	key-shares	and	
signatures	 look	the	same	to	a	TLS	client

Logjam:	MitM Group	Downgrade	Attack	

Compute	discrete	logs	on	
512-bit	DH	groups	in	real-time

Remove	Strong	Groups

Client/Server
Impersonation

Downgrade	Protection	in	TLS	1.2

• In	TLS	1.2,	both	client	and	server	MAC	the	full	
transcript	to	prevent	tampering:

mac(k,	[G2048,G512]	|	G512 |	m1 |	m2)
• But	it’s	too	late,	we	already	used	G512 to	compute	k

k =	kdf(gxy mod	p512)
so,	the	attacker	can	compute	k and	forge	the	MAC

The	TLS	1.2	downgrade	protection	mechanism	
itself	depends	on	downgradeable parameters!
• We	can	break	it	if	we	can	compute	the	
discrete	log	while	the	connection	is	still	live

Logjam

Most	TLS	servers	use	well-known	512-bit	groups
• 92%	of	DHE_EXPORT	servers	use	one	of	two	groups
• 1-2	weeks	of	precomputation	per	group	(CADO-NFS)
• 90	seconds	to	compute	discrete	log	for	each	key
• Practitioners	seemingly	unaware	of	this	optimization!

Logjam

The	TLS	transcript	MAC	does	not	prevent	
Diffie-Hellman	group	downgrades	
• Must	disable	all	weak	DH	groups	and	elliptic	curves
• Browsers	moving	to	1024-bit	minimum	group	size
• Breaking	768-bit	and	1024-bit	groups	will	have	a	

catastrophic	impact	on	TLS,	SSH,	and	IPsec

Could	we	do	better	by	relying	on	transcript	
signatures	for	downgrade	protection?

Downgrade	Protection	via	Signatures
IKEv1:	both	A	and	B	sign	the	offered	groups
• sign(skB,	hash([G2048,G512]	|	m1 |	m2))
• no	agreement	on	chosen	group!

IKEv2:	each	party	signs	its	own	messages
• sign(skA,	hash([G2048,G512]	|	m1))
• sign(skB,	hash(G512 |	m2))
• no	agreement	on	offered	groups!

SSH-2	and	TLS	1.3:	sign	the	full	transcript
• sign(k,	hash([G2048,G512]	|	G512 |	m1 |	m2))
• Prevents	Logjam	(but	what	about	other	downgrades?)

SIGMA	with	Generic	Negotiation

Version/Group/
Cipher	Parameters

Signed	Transcript

Downgrade	Protection	via	Signatures

• Sign	the	full	transcript
– sign(skB,	hash(m1 |	m2))
– Example:	TLS	1.3,	SSH-2,	TLS	1.2	client	auth

• How	weak	can	the	hash function	be?
– do	we	need	collision	resistance?
– do	we	only	need	2nd preimage resistance?
– Is	it	still	safe	to	use	MD5,	SHA-1	in	TLS,	IKE,	SSH?
– Disagreement:	cryptographers	vs.	practitioners	

(see	Schneier vs.	Hoffman,	RFC4270)

SLOTH:	Transcript	Collision	Attacks

Server	
Impersonation

Client	
Impersonation

Parameter	
Downgrade

Man-in-the-Middle:
network	attacker/malicious	server

Computing	a	Transcript	Collision

hash(m1 |	m’2) =	hash(m’1 |	m2)	

• We	need	to	compute	a	collision,	not	a	preimage
– Attacker	controls	parts	of	both	transcripts
– If	we	know	the	black	bits, can	we	compute	the	red bits?
– This	can	sometimes	be	set	up	as	a	generic	collision

• If	we’re	lucky,	we	can	set	up	a	shortcut collision
– Common-prefix:	collision	after	a	shared	transcript	prefix
– Chosen-prefix:	collision	after	attacker-controlled	prefixes

Primer	on	Hash	Collision	Complexity

• MD5:	known	attack	complexities
– MD5	second	preimage 2128	hashes
– MD5 generic	collision:	 264	hashes (birthday)
– MD5	chosen-prefix	collision:	 239	hashes (1	hour)
– MD5 common-prefix	collision: 216	hashes (seconds)

• SHA1:	estimated	attack	complexities
– SHA1	second	preimage 2160	hashes
– SHA1 generic	collision:	 280 hashes (birthday)
– SHA1	chosen-prefix	collision: 277 hashes	 (?)
– SHA1 common-prefix	collision: 261 hashes	 (?)

hashhash

Computing	Transcript	Collisions

len1
gx

paramsA

len1’
gx’

params’A

len2
gy

paramsB

len2’
gy’

params’B

A BMitM

m1 m1
’

m2m2
’

Generic	Transcript	Collisions

len1
gx

nonceA

len1’
gx’

nonce1
len2
gstatic

nonceA

len2’
gy’

nonce1

A BMitM
hash hash

len2’
gy’

nonce2

len1’
gx’

nonce2

len1’
gx’

nonceN
len2’
gy’

nonceN

Predictable:
Static	DH	key,	
no	fresh	nonce

Try	random	nonces
until	collision

N	=	2|hash|/2
MD5:	264
SHA-1:	280

HMAC/96:	248

Chosen-Prefix	Transcript	Collisions

len1
gx

blobA
len2
gy

blobB

A BMitM

Known	length,	
ephemeral	DH	key,	
arbitrary	BLOB

m1

m2

len1
gx

blobA

len2
gy

blobB

len2’
gy’

C1

A BMitM

len1’
gx’

00000000

00000000
00000000

C2
len2
gy

blobB

hash hash

blobA’

blobB’

Find	Chosen-Prefix	
Collision	C1,	C2

m1 m1
’

m2m2
’

Merkle-Damgard
hash	extension

N	=	2CPC(hash)
MD5:	239
SHA-1:	277

Downgrading	and	Attacking	TLS	1.2
TLS	1.2	upgraded	the	hash	functions	used	in	TLS
• TLS	1.1	hard-coded	the	use	of	MD5	||	SHA-1
• TLS	1.2	uses	SHA-256	for	all	handshake	constructions
• Allows	negotiation	of	hash	functions:	SHA-256/384/512

TLS	1.2	added	support	for	MD5-based	signatures!
• Even	if	the	client	and	server	prefer	RSA-SHA256,	

the	connection	can	be	downgraded	to	RSA-MD5!

Transcript	collisions	break	TLS	1.2	client	signatures
• Chosen	prefix	collision	exploiting	flexible	message	formats
• Demo:	Takes	1	hour/connection	on	a	48-core	workstation
• Not	very	practical:	connection	must	be	live	during	attack

Attacking	TLS	Server	Auth

• TLS	1.2	server	signatures	are	harder	to	break
– Irony:	the	weakness	that	enables	Logjam	blocks	SLOTH
– Needs	2X	prior	connections	+	2128-X	hashes/connection
– Not	practical	for	academics,	as	far	as	we	know

• TLS	1.3	server	signatures	is	potentially	vulnerable
– New:	MD5,	SHA-1	sigs	now	explicitly	forbidden	in	TLS	1.3

Other	Hash	Constructions	in	TLS

• When	used	as	transcript	hash	functions
many	constructions	are	not	collision	resistant
– MD5(x)	|	SHA1(x)	
not	much	better	than	SHA1

– HMAC-MD5(k,x)
not	much	better	than	MD5

– HMAC-SHA256(k,MD5(x))
not	much	better	than	MD5

– Truncated	HMAC-SHA256(k,x)	to	N	bits
not	much	better	than	a	N	bit	hash	function

Other	SLOTH	Vulnerabilities

Reduced	security	for	TLS	1.*,	IKEv1,	IKEv2,	SSH
• Impersonation	attack	on	TLS	channel	bindings
• Exploits	downgrades	+	transcript	collisions
• Protocol	flaws,	not	implementation	bugs
• Only	mitigation	is	to	disable	weak	hash	functions

Logjam	and	SLOTH:	Lessons	Learned
Legacy	crypto	can	remain	hidden	for	a	long	time
• Finding	DHE_EXPORT,	RSA-MD5	enabled	was	surprising

Important	to	demonstrate	concrete	attacks,	
not	just	theoretical	weaknesses
• Concrete	attacks	can	help	motivate	new	cryptanalytic	
optimizations,	and	justify	implicit	proof	assumptions

TLS	1.2	does	not	prevent	some	downgrades
• Need	for	a	formal	model	of	downgrade	resilience	
and	a	new	protocol	that	provably	achieves	it

Downgrade	Resilience
in	Key	Exchange	Protocols	

AKEs	with	Parameter	Negotiation

• Let’s	consider	two	party	protocols	(I	 R)
• Key	exchange	inputs:	
– configI &	configR:	 supported	versions,	ciphers,	etc.	
– credsI &	credsR:	 long-term	private	keys

• Key	exchange	outputs:
– uid: unique	session	identifier	
– k: session	key
–mode: negotiated	version,	cipher, etc.

Agile	AKE	Security	Goals
• Partnering
at	most	one	honest	partner	exists	with	same	uid

• Agreement
if	my	negotiated	mode	uses	only	strong	algorithms,	
then	my	partner	and	I	agree	on	k	andmode

• Confidentiality
if	my	negotiated	mode	uses	only	strong	algorithms,	
the	key	k	is	only	known	to	me	and	my	partner

• Authenticity
if	my	intended	peer	is	authenticated	and	honest,	
and	my	negotiated	mode	uses	only	strong	algorithms,	
then	at	least	one	partner	with	same	uid exists

Agile	Agreement	vs.	Downgrades

• Agreement
if	my	negotiated	mode	uses	only	strong	algorithms,	
then	my	partner	and	I	agree	on	k	andmode

• Agreement	does	not	guarantee	that	the	protocol	
will	negotiate	a	strong	mode
– So,	it	does	not	forbid	downgrade	attacks
– To	prevent	downgrades,	all	algorithms	in	
the	intersection of		configI &	configRmust	be	strong

–What	if	configI &	configR include	a	legacy	algorithm	?

A	New	Downgrade	Resilience	Goal
• Ideal	Negotiation: Nego(configI,	configR)	
Informally,	the	mode	that	would	have	been	
negotiated	in	the	absence	of	an	attacker	

• Downgrade	Resilience
The	protocol	should	negotiate	the	idealmode	
even	in	the	presence	of	the	attacker

mode	=	Nego(configI,	configR)	

(Details	in	IEEE	S&P	2016,	see:	mitls.org)

Testing	the	Definition

• IKEv1	does	not	prevent	downgrades
– Known	DH	group,	ciphersuite downgrades

• IKEv2	does	not	prevent	downgrades
– New	attack	on	EAP	mode

• ZRTP	does	not	prevent	downgrades
– New	attack	on	pre-shared	mode

• SSHv2	is	downgrade	resilient	if	SHA-1	not	used
– Stronger	agreement	theorem	than	previous	work

Stronger	key	exchanges,	fewer	options
• ECDHE	and	DHE	by	default,	no	RSA	key	transport
• Strong	DH	groups	(>	2047	bits)	and	EC	curves	(>	255	bits)
• Only	AEAD	ciphers	(AES-GCM),	no	CBC,	no	RC4

Faster:	lower	latency	with	1	round-trip
• 0-round	trip	mode	also	available

Crypto	proofs	built	side-by-side	with	standardization
• Active	participation	by	a	large	group	of	researchers	
• Proofs	in	multiple	symbolic	and	computational	models	
• Verified	implementation	in	miTLS (ongoing	work)

TLS	1.3	Negotiation	Sub-Protocol

1:	Group	Negotiation	with	Retry

• Server	can	ask	client	to	retry	with	another	group
–What	if	attacker	sends	a	bogus	Retry?

• Idea:	The	transcript	hashes	both	hellos	and	retry
to	prevent	tampering	of	Retry	messages.

2:	Full	Transcript	Signatures

• Client	and	Server	both	sign	full	 transcript
– Only	SHA-256	or	newer	hash	algorithms	allowed
– Downgrade	resilience	can	rely	only	on	signatures
– Logjam-like	attacks	are	prevented!

3:	Preventing	Version	Downgrade
• Clients	and	servers	will	support	TLS	1.2	for	a	long	time
– TLS	versions	evolve	slowly	on	the	web:
TLS	1.0	is	still	the	most	widely	deployed	version

• An	attacker	may	downgrade	TLS	1.3	to	TLS	1.2
and	then	reuse	known	downgrade	attacks!
– TLS	1.3	clients	and	servers	will	still	be	vulnerable	to	Logjam

• Idea:	the	server	includes	maximum	supported	version	
in	server	nonce	(64	upper	bits)
– server	nonce	is	signed	in	all	versions	TLS	1.0-1.3
– only	protects	signature	ciphersuites,	not	RSA	encryption

TLS	1.3	is	Downgrade	Resilient
• We	prove	downgrade	resilience	for	the	
negotiation	sub-protocol	of	TLS	1.3 [S&P	2016]

• FREAK	 Export-grade	512-bit	RSA [Mar’15]
• LOGJAM		 Export-grade	512-bit DH [May’15]
• SLOTH	 RSA-MD5	signatures [Jan’16]

• TLS	was	supposed	to	prevent	downgrade	attacks
• What	went	wrong? How	do	we	fix	it	in	TLS	1.3?

Final	Thoughts

• Legacy	crypto	is	strangely	hard	to	get	rid	of,	
but	we	have	to	keep	trying	to	kill	broken	primitives

• We	need	new	downgrade	resilient	protocols

• In	prior	versions,	TLS	suffered	a	large	time	lag	
between	standardization	and	proofs	of	security

• With	TLS	1.3,	researchers	are	closing	this	gap

• More	details,	papers,	demos	are	at:
http://mitls.org

