Protecting TLS
from Legacy Crypto

http://mitls.org

Karthikeyan Bhargavan
+ many, many others.

(INRIA, Microsoft Research, LORIA, IMDEA, PLR
Univ of Pennsylvania, Univ of Michigan, JHU) ~ vevorsrorTheommacwon



Agile Cryptographic Protocols

Popular cryptographic protocols evolve
«SSLvd = TLS1.2
« DH-768 =  Curve25519
« MD5 =» SHA-256

Agility: graceful transition from old to new
« Negotiate best shared version, cipher, DH group

What can go wrong?
« We get lazy and forget to remove weak algorithms
 Downgrade attacks that exploit obsolete legacy crypto



Attacks on Legacy Crypto in TLS

RC4 Keystream biases

Lucky 13 MAC-Encode-Encrypt CBC
POODLE SSLv3 MAC-Encode-Encrypt
-REAK Export-grade 512-bit RSA
 OGJAM Export-grade 512-bit DH
SLOTH RSA-MDS5 signatures
DROWN SSLv2 RSA-PKCS#1v1.5

‘Mar’13]
‘May’13]
Dec’14]
‘Mar’15]
‘May’15]
Jan’16]

‘Mar’16]

TLS was supposed to prevent downgrade attacks
What went wrong? How do we fix it in TLS 1.37?



Transport Layer Security (1994—)

The default secure channel protocol?
HTTPS, 802.1x, VPNs, files, mail, VolP, ...

20 years of attacks and fixes

1994
1996
1999
2006
2008

Netscape’s Secure Sockets Layer
SSLv3

TLS1.0 (RFC2246)

TLS1.1 (RFC4346)

TLS1.2 (RFC5246)

20167 TLS1.3

Many implementations

OpenSSL, SecureTransport, NSS,
SChannel, GnuTLS, JSSE, PolarSSL, ...
many bugs, attacks, patches every year

Many security theorems
mostly for small simplified models of TLS

@ https://tools.ietf.org/html/ O ~ @ B O

\ Py

\ —— - -
eej@ https://tools.ietf.org/html/ O ~ @ B ¢ I@ RFC 5246 - The Transport L... % — AR
[ — — _ —

[Docs] [txt|pdf] [draft-ietf-tls-rf...] [Diffl] [Diff2] [IPR] [Errata] A

PROPCSED STANDARD
Errata Exist

Updated by: 5746, 5878, 6176

Network Working Group T. Dierks
Request for Comments: 5246 Independent
Obsoletes: 3268, 4346, 4366 E. Rescorla
Updates: 4492 RTFM, Inc.

Category: Standards Track August 2008

The Transport Layer Security (TLS) Protocol
Version 1.2
Status of This Memo

an Internet standards track protocol for the
ion and suggestions for

This document specifies
Internet community, and regquests discuss
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Abstract
This document specifies Version 1.2 of the Transport Layer Security
(TLS) protocol. The TLS protocol provides communications security
applications to

over the Internet. The protocol allows client/server
communicate in a way that is designed to prevent eavesdropping,

tampering, or message forgery. v




TLS protocol overview

Client Server
Hello  ) Protocol negotiation
e Version, Ciphersuite
 DH groups, Auth mode
AKE Authenticated Key Exchange
* \Verify peer identity
* Generate session key
Finished Transcript & key confirmation
 Completes authentication
/ * Matches transcripts
AppData Application data streams

e Full duplex channel
* Authenticated encryption



Protocol Agility in TLS

Protocol versions
e TLS 1.2, TLS 1.1, TLS 1.0, SSLv3, SSLv2

Key exchanges
« ECDHE, FFDHE, RSA, PSK, ...

Authentication modes
 ECDSA, RSA signatures, PSK,...

Authenticated Encryption Schemes
« AES-GCM, CBC MAC-Encode-Encrypt, RC4,...

100s of possible protocol combinations!



Example Protocol Instance

TLS RSA WITH AES 128 CBC SHA

—

\

J

RSA Key Transport
RSA-PKCS#1 v1.5 encryption
[1998] Bleichenbacher

attack and fixes
[2013] Crypto proof
for TLS-RSA
[2016] DROWN attack:
downgrade to SSLv2

AES-CBC + HMAC

MAC-Encode-Encrypt Scheme
[2002] Vaudenay attack

[2011] Crypto proof for

2013
2014

2016

TLS MEE-CBC

Lucky 13 attack

Poodle attack on SSLv3
Verified implementation




The Modeling Gap

Textbook crypto proofs not applicable to TLS

* |t uses classic constructs in non-standard ways
* Needs protocol-specific assumptions and proofs
* Much recent progress: sLHAE, ACCE, miTLS

Theoretical attacks not always exploitable
» Attack may be thwarted by protocol details

* Practitioners only respond to practical attacks

* Leads to a communication gap between
cryptographers and practitioners



The Protocol Composition Gap

Most crypto proofs are for single constructs
 TLS-DHE, TLS-RSA, TLS-PSK, MEE-CBC

Many attacks appear only in composition
 Downgrades and cross-protocol attacks
« State-machine flaws in implementations

Too many compositions to prove by hand

* We need automated verification tools that can
analyze both protocols and implementations



miTLS: Closing the Gap

A verified reference implementation of TLS
« Covers TLS 1.0-1.2, dozens of ciphersuites
* Accounts for messy low-level protocol details

e @l @ http://www.mitls.org/wsgi/home L~C | & miTLS - Home {;D * {§}
File Edit View Favorites Tools Help
55 b Bing £ Tiemersma's Simple Rules... & Cryptology ePrint Arc... v 7. TLS [EJ Google " o~ v [ g v Pagev Safety~v 7

Home Publications Download Browse TLS Attacks People

Pel

miTLS

A verified reference TLS implementation

=

=
b

miTLS News

miTLS is a verified reference implementation of the TLS protocol. Our code fully supports its wire 3 October 2014
formats, ciphersuites, sessions and connections, re-handshakes and resumptions, alerts and MITLS 0.8.1 released. See the download
page.

errors, and data fragmentation, as prescribed in the RFCs; it interoperates with mainstream web
browsers and servers. At the same time, our code is carefully structured to enable its modular, 20 August 2014

e

a2 s .. _eme . _a*_ . E P T T S P T P Ty T . ez .2



MITLS: New TLS Attacks

Triple Handshake Attacks [S&P 2014]

» Breaking client authentication by
composing three different handshake modes

State Machine Attacks (e.g. FREAK) [S&P 2015]

* Bugs in the composite state machines
implemented by mainstream TLS libraries

Logjam [CCS 2015]
 DH group downgrade using DHE_EXPORT
SLOTH INDSS 2016]

* Hash function downgrade for transcript collisions



Downgrade Attacks
on Agile Key Exchange



Anonymous Diffie-Hellman (DH

anon)

A B
Knows G = (g, p) Knows G = (g, p)
g;j mod p s
B gY mod p
k = kdf(¢™¥ mod p) k = kdf(¢™¥ mod p)

* *



Man-in-the-Middle attack on DH

Knows G = (g, p)

k. = kdf(¢g®¥" mod p)

i

anon
MitM B
Knows G = (g, p)
gy/ mod p S g . mod p N
B gy mod p - gy mod p
Knows k¢, ks ks = kdf(¢g®'¥ mod p)

E—

Active Network Attacker
or Malicious Peer




SIGMA: Authenticated DH

A PKI B
-
Knows [sk A, Pk B] Knows|sk g, pk 4
G = (9,p) G = (9,p)
m1 = ¢g* mod p N
B mo = g¥ mod p

k = kdf(¢g*™¥ mod p)

k = kdf(g™¥ mod p)

" sign(sk 4, hash(m

ms)), mac(k, A)N

<€

sign(sk g, hash(m,

ms)), mac(k, B)

|

Sign-and-MAC the transcript:

prevents most MitM attacks

—_




SIGMA with Group Negotiation

k = kdf(gmy mod p2048)

sign(sk 4, hash(my

A B
DH Group
Knows sk 4, pk g Negotiation Knows sk, pk 4
G048, G512 G2048, G512

[G2048, G512] N ~

B G2048 Why? backwards
my = ¢g* mod paoas S compatibility,

B mg = g¥ mod pao4s export regulations,.../

k = kdf(g‘”y mod p2048)

ms)), mac(k, A)

sign(sk g, hash(m;

>

ms)), mac(k, B)




Export-Grade 512-bit DHE in TLS

TLS 1.0 supported deliberately weakened ciphers to
comply with export regulations in 1990s

« DH groups/RSA keys limited to 512 bits

EXPORT deprecated in 2000,
but still supported by TLS in 2015

* 8.4% of Top 1M websites in March 2015

* Browsers only support DHE, not DHE_EXPORT
but will accept 512-bit DH groups for DHE
* Protocol flaw:

Server’s DHE and DHE_EXPORT key-shares and
signatures look the same to a TLS client



Logjam: MitM Group Downgrade Attack

A MitM —
Remove Strong Groups
Knows sk 4, pkg —mem@é,pk,q
G2048, G512 G2048, G512
|G2048, G512] 5 (G512] >
< G512

my1 = g* mod ps12 5

B mg = g¥ mod ps;2

k = kdf(g™ mod ps12) b = dlog(g¥ mod p512) k = kdf(g®¥ mod p)

k = kdf(g*¥ mod p512)

sign(sk 4, hash(my | msy)), mac(k, A) ™\
_sign(skp, hash(my | ms)), mac(k, B)

Compute discrete logs on
512-bit DH groups in real-time
Client/Server \_ )
Impersonation




Downgrade Protection in TLS 1.2

 InTLS 1.2, both client and server MAC the full
transcript to prevent tampering:
mac(k, [G,045,Gs15] | Gsgo | My | my)

* Butit’s too late, we already used G,, to compute k
k = kdf(g® mod ps;,)
so, the attacker can compute k and forge the MAC

The TLS 1.2 downgrade protection mechanism
itself depends on downgradeable parameters!

 We can break it if we can compute the
discrete log while the connection is still live



Logjam: Exploiting Pre-Computation

polynomial sieving linear

l selection algebra X Y, 9 descent |
P >@ @ >< >0—>'logdb!n '[ <§>_’x
: precomputation . individual log |

Most TLS servers use well-known 512-bit groups
e 92% of DHE_EXPORT servers use one of two groups

e 1-2 weeks of precomputation per group (CADO-NFS)

* 90 seconds to compute discrete log for each key

* Practitioners seemingly unaware of this optimization!



Logjam: Impact and Countermeasures

The TLS transcript MAC does not prevent
Diffie-Hellman group downgrades

« Must disable all weak DH groups and elliptic curves
* Browsers moving to 1024-bit minimum group size

* Breaking 768-bit and 1024-bit groups will have a
catastrophic impact on TLS, SSH, and IPsec

Could we do better by relying on transcript
signatures for downgrade protection?



Downgrade Protection via Signatures

IKEv1: both A and B sign the offered groups
* sign(skg, hash([Gy045,Gs15] | My | My))
* no agreement on chosen group!

IKEv2: each party signs its own messages
* sign(sky, hash([Gy45,Gs15] | My))

* sign(skg, hash(Gsy; | m,))

* no agreement on offered groups!

SSH-2 and TLS 1.3: sign the full transcript
* sign(k, hash([G,048,G515] | G5, | My | m,))
* Prevents Logjam (but what about other downgrades?)



SIGMA with Generic Negotiation

A B
Version/Group/
KnOWS SkA) pkB? (g7p) Clpher Parameters KnOWS SkB) pkA7 (g?p)
mi = g* mod p | params 4 S
B mo = g¥ mod p | paramsg
Keys k = kdf(g*¥ mod p)\ Keys k = kdf(g™ mod p)
Transcript t = T'(m;, mg)/> Transcript t = T(my, m3)
sign(sk 4, hash(t)), mac(k, A) N
B sign(sk g, hash(t)), mac(k, B)
I .

[ Signed Transcript




Downgrade Protection via Signatures

e Sign the full transcript
— sign(sky, hash(m, | m,))
— Example: TLS 1.3, SSH-2, TLS 1.2 client auth

 How weak can the hash function be?
— do we need collision resistance?
— do we only need 2"? preimage resistance?
— Is it still safe to use MD5, SHA-1 in TLS, IKE, SSH?

— Disagreement: cryptographers vs. practitioners
(see Schneier vs. Hoffman, RFC4270)



SLOTH: Transcript Collision Attacks

[

Man-in-the-Middle:
network attacker/malicious server

]

A

MitM

Knows sk 4, pk g

my = g% | params 4

'~

Parameter
Downgrade

~

nows skg, pk 4

r-/
m} = g* | params’,

!
mo = g¥ | params'y

mo = g¥ | paramsg

<
-

e
-«

/

\

Keys ko = kdf(g*¥ mod p) </ Knows kq, kb \> Keys ky, = kdf(g*¥ mod p)
Transcript t, = T'(my, mb) \COlliSiOH hash(t,) = haSh(tz} Transcript t, = T'(m/, ms2)
o e—— —
sign(sk 4, hash(t,)), mac(k, A) sign(sk a, hash(ty)), mac(k, A)
sign(sk g, hash(t,)), mac(k, B) sign(skB/ sh(ty)), mac(k, B)

Server Client

Impersonation

Impersonation




Computing a Transcript Collision

hash(m, | m’,) = hash(m’; | m,)

 We need to compute a collision, not a preimage
— Attacker controls parts of both transcripts
— If we know the black bits, can we compute the red bits?

— This can sometimes be set up as a generic collision

* |If we're lucky, we can set up a shortcut collision

— Common-prefix: collision after a shared transcript prefix
— Chosen-prefix: collision after attacker-controlled prefixes



Primer on Hash Collision Complexity

 MD5: known attack complexities

— MD5 second preimage

— MD?5 generic collision:

— MD5 chosen-prefix collision:
— MD5 common-prefix collision:

2128 hashes
2%4hashes (birthday)
23%hashes (1 hour)

21%hashes (seconds)

 SHA1: estimated attack complexities

— SHA1 second preimage

— SHA1 generic collision:

— SHA1 chosen-prefix collision:
— SHA1 common-prefix collision:

2160 hashes

280 hashes (birthday)
2’7 hashes (?)

261 hashes (?)




Computing Transcript Collisions
A MitM B
hash % hash

len, | | len,

params, params’,

’

params’, params;




Generic Transcript Collisions

A MitM B
hash | hash
| Try random nonces
erll until c?llision Ienl’
2
nonce, z
| //\ -1 noncey
™\ IerT,
V4
— hash|/2
len, | N= pl |/ gsatic
gv’ MD5: 264 \—~
SHA-1: 280 nonceA
noncey HMAC/96: 248 y

\_




Chosen-Prefix Transcript Collisions

A MitM B
len,
My
g g
blob,
len,
< m> gy

" Known length, e
ephemeral DH key, f blobg

arbitrary BLOB

\_




hash | hash
my my
gx > = gx
blob,
V4
len,

gV Find Chosen-Prefix blob,
Collision C;, C,

~

, len
b|ObB N = 2CPC(hash) | 2
— MDS5: 239 B g’
SHA-1: 277

\ ) blObB




Downgrading and Attacking TLS 1.2

TLS 1.2 upgraded the hash functions used in TLS

e TLS 1.1 hard-coded the use of MD5 | | SHA-1
e TLS 1.2 uses SHA-256 for all handshake constructions
* Allows negotiation of hash functions: SHA-256/384/512

TLS 1.2 added support for MD5-based signatures!

e Even if the client and server prefer RSA-SHA256,
the connection can be downgraded to RSA-MD5!

Transcript collisions break TLS 1.2 client signatures
* Chosen prefix collision exploiting flexible message formats
 Demo: Takes 1 hour/connection on a 48-core workstation
* Not very practical: connection must be live during attack



Attacking TLS Server Auth

* TLS 1.2 server signatures are harder to break
— Irony: the weakness that enables Logjam blocks SLOTH
— Needs 2X prior connections + 2128Xhashes/connection
— Not practical for academics, as far as we know

 TLS 1.3 server signatures is potentially vulnerable
— New: MD5, SHA-1 sigs now explicitly forbidden in TLS 1.3



Other Hash Constructions in TLS

 When used as transcript hash functions
many constructions are not collision resistant

— MD5(x) | SHA1(x)
not much better than SHA1

— HMAC-MD5(k,x)
not much better than MD5

— HMAC-SHA256(k,MD5(x))
not much better than MD5

— Truncated HMAC-SHA256(k,x) to N bits
not much better than a N bit hash function



Other SLOTH Vulnerabilities

Reduced security for TLS 1.*, IKEv1, IKEv2, SSH
* Impersonation attack on TLS channel bindings

* Exploits downgrades + transcript collisions

* Protocol flaws, not implementation bugs

* Only mitigation is to disable weak hash functions

Protocol Property Mechanism Attack Collision Type  Precomp. Work/conn.  Preimage  Wall-clock time
TLS 1.2 Client Auth RSA-MD5 Impersonation ~ Chosen Prefix 239 2128 48 core hours
TLS 1.3 Server Auth RSA-MD5 Impersonation ~ Chosen Prefix 239 2128 48 core hours
TLS 1.0-1.2  Channel Binding HMAC (96 bits)  Impersonation  Generic 248 296 80 GPU days
TLS 1.2 Server Auth RSA-MD5 Impersonation ~ Generic 2% conn.  2128-X 2128

TLS 1.0-1.1  Handshake Integrity =~ MDS5 | SHA-1 Downgrade Chosen Prefix 277 2160

IKE vl Initiator Auth HMAC-MD5 Impersonation  Generic 265 2128

IKE v2 Initiator Auth RSA-SHA-1 Impersonation ~ Chosen Prefix 277 0 2160

SSH-2 Exchange Integrity SHA-1 Downgrade Chosen Prefix 277 2160




Logjam and SLOTH: Lessons Learned

Legacy crypto can remain hidden for a long time
* Finding DHE_EXPORT, RSA-MDS5 enabled was surprising

Important to demonstrate concrete attacks,
not just theoretical weaknesses

» Concrete attacks can help motivate new cryptanalytic
optimizations, and justify implicit proof assumptions

TLS 1.2 does not prevent some downgrades

* Need for a formal model of downgrade resilience
and a new protocol that provably achieves it



Downgrade Resilience
in Key Exchange Protocols



AKEs with Parameter Negotiation

* Let’s consider two party protocols (/ = R)
e Key exchange inputs:

— config, & configs: supported versions, ciphers, etc.

— creds, & credsg: long-term private keys
e Key exchange outputs:

—uid:  unique session identifier

— k: session key

— mode: negotiated version, cipher, etc.



Agile AKE Security Goals

Partnering
at most one honest partner exists with same uid

Agreement
if my negotiated mode uses only strong algorithms,

then my partner and | agree on k and mode
Confidentiality

if my negotiated mode uses only strong algorithms,
the key k is only known to me and my partner

Authenticity
if my intended peer is authenticated and honest,

and my negotiated mode uses only strong algorithmes,
then at least one partner with same uid exists



Agile Agreement vs. Downgrades

* Agreement
if my negotiated mode uses only strong algorithmes,
then my partner and | agree on k and mode

 Agreement does not guarantee that the protocol
will negotiate a strong mode
— So, it does not forbid downgrade attacks

— To prevent downgrades, all algorithms in
the intersection of config, & config, must be strong

— What if config, & config, include a legacy algorithm ?



A New Downgrade Resilience Goal

* Ideal Negotiation: Nego(config, configg)
Informally, the mode that would have been
negotiated in the absence of an attacker

 Downgrade Resilience
The protocol should negotiate the ideal mode
even in the presence of the attacker

mode = Nego(config, configg)

(Details in IEEE S&P 2016, see: mitls.org)




Testing the Definition

IKEv1 does not prevent downgrades

— Known DH group, ciphersuite downgrades

IKEv2 does not prevent downgrades
— New attack on EAP mode

ZRTP does not prevent downgrades

— New attack on pre-shared mode

SSHv2 is downgrade resilient if SHA-1 not used

— Stronger agreement theorem than previous work



A new protocol: TLS 1.3

Stronger key exchanges, fewer options

« ECDHE and DHE by default, no RSA key transport

« Strong DH groups (> 2047 bits) and EC curves (> 255 bits)
« Only AEAD ciphers (AES-GCM), no CBC, no RC4

Faster: lower latency with 1 round-trip
e 0O-round trip mode also available

Crypto proofs built side-by-side with standardization
« Active participation by a large group of researchers

* Proofs in multiple symbolic and computational models

« \Verified implementation in miTLS (ongoing work)



TLS 1.3 Negotiation Sub-Protocol

Client I Server R
CH(nz, mazy,lay,...,an,[(G1,9"")])
Retry(Gs) g
_l?g_l_ ‘CH(nI’ maxy, [a’l’ Tt a‘n]’ [(Glagxl )7 (G2a gxz)])\ _l?g_l_
\\\ SH(’I’LR,’U,CLR,(GQ,gy)) g
(k1, ko) = kdf(g™2¥, log,) (k1, ko) = kdf(g*2¥, log,)
log, log,
logg "~ [SC(cert g)]*2 ,-" logs
. [SCV(sign(sk g, hash; (hash(logz))))]*2 L7
ms = kdf(g*?Y, logs) ms = kdf(g”2¥, logs)
) [SFIN(mac(ms, hash(logs)))]*?
log 4 7 X [CFIN(mac(ms, hash(log,)))]* S log,
[Datal*: :
[Datal*2 g
e 49000 | |




1: Group Negotiation with Retry

Client I

log,

Server R

CH(ny,maxr, [ai,...,as], [(G1,9")])

Retry(Gs)

>

CH(nr,mazy,|aq, ..

y 70%]7 [(Glagml)7 (G2,gw2)])

<

SH(ng,v,ar, (G2, g¥))

log,

> - --

e Server can ask client to retry with another group

— What if attacker sends a bogus Retry?

* Idea: The transcript hashes both hellos and retry
to prevent tampering of Retry messages.



2: Full Transcript Signatures

log log,

logs "~ [SC(certg)]*2 -~ logs

[SCV(sign(sk r, hashy (hash(log2))))]*2

* Client and Server both sign full transcript
— Only SHA-256 or newer hash algorithms allowed
— Downgrade resilience can rely only on signatures
— Logjam-like attacks are prevented!



3: Preventing Version Downgrade

* Clients and servers will support TLS 1.2 for a long time

— TLS versions evolve slowly on the web:
TLS 1.0 is still the most widely deployed version

* An attacker may downgrade TLS 1.3 to TLS 1.2
and then reuse known downgrade attacks!

— TLS 1.3 clients and servers will still be vulnerable to Logjam

* Ildea: the server includes maximum supported version
in server nonce (64 upper bits)
— server nonce is signed in all versions TLS 1.0-1.3
— only protects signature ciphersuites, not RSA encryption



TLS 1.3 is Downgrade Resilient

* We prove downgrade resilience for the
negotiation sub-protocol of TLS 1.3 [S&P 2016]

Client [ Server R
mo = (nr, Fo(cfgr))
my =GR
my = (nr, F1(cfg;, GRr))

wid = (nr,nR)

n'p =mazgr |nr

mode = nego(F1(cfgr, Gr), cfgR)
= (v,aR,GRr, pkg, hash;)

ma = (nIRa V,aR, GRa ka)

verify Version(n'p, v, cfg;)
uwid = (ny,np

mb = sign(sk g, hashy (H (mg, mg, my, ma, —)))

mode = (v,ar, Gr, pk g, hash;) complete = true
check(cfg;, mode)
complete = true

+ I




Attacks on Legacy Crypto in TLS

RC4 Keystream biases

Lucky 13 MAC-Encode-Encrypt CBC
POODLE SSLv3 MAC-Encode-Encrypt
-REAK Export-grade 512-bit RSA
 OGJAM Export-grade 512-bit DH
SLOTH RSA-MDS5 signatures
DROWN SSLv2 RSA-PKCS#1v1.5 Enc

‘Mar’13]
‘May’13]
Dec’14]
‘Mar’15]
‘May’15]
Jan’16]

‘Mar’16]

TLS was supposed to prevent downgrade attacks
What went wrong? How do we fix it in TLS 1.37?



Final Thoughts

e Legacy crypto is strangely hard to get rid of,
but we have to keep trying to kill broken primitives

* We need new downgrade resilient protocols

* In prior versions, TLS suffered a large time lag
between standardization and proofs of security

 With TLS 1.3, researchers are closing this gap

* More details, papers, demos are at:
http://mitls.org




