
New Negative Results on
Differing-Inputs Obfuscation

Mihir Bellare Brent WatersIgors Stepanovs

May 12, 2016
EUROCRYPT 2016

1

Our Main Result at a Glance

2

Differing-inputs obfuscation (Barak et al., 2001)

Differing-inputs obfuscation is implausible[GGHW14]:

… because it cannot coexist with another form
of obfuscation that seems to be weaker.

This work: Differing-inputs obfuscation is impossible
… assuming sub-exponentially secure one-way
functions.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Our Main Result at a Glance

3

Differing-inputs obfuscation (Barak et al., 2001)

Differing-inputs obfuscation is implausible[GGHW14]:

… because it cannot coexist with another form
of obfuscation that seems to be weaker.

This work: Differing-inputs obfuscation is impossible
… assuming sub-exponentially secure one-way
functions.

for TMs

for circuits

sub-exp secure

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Obfuscation

ObfuscatorProgram P Program P*

no more useful
than an oracle for

1. Correctness:

and
i.e. P(x) = P*(x) for all x.

2. Security:

4

functionally equivalent,

Circuits or Turing Machines

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Obfuscation

ObfuscatorProgram P Program P*

no more useful
than an oracle for

1. Correctness:

and
i.e. P(x) = P*(x) for all x.

2. Security:

5

functionally equivalent,

[BGIRSVY01]: Virtual Black Box Obfuscation is impossible!

Circuits or Turing Machines

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Obfuscation

ObfuscatorProgram P Program P*

no more useful
than an oracle for

1. Correctness:

and
i.e. P(x) = P*(x) for all x.

2. Security:

6

functionally equivalent,

Are there weaker forms of obfuscation that are achievable and useful?

PO
VGBO
iO
diO

– point-function obfuscation [C97, CMR98, LPS04, ...]
– virtual grey box obfuscation [BC10, ...]
– indistinguishability obfuscation [BGIRSVY01, GGHRSW13, SW13, ...]
– differing-inputs obfuscation [BGIRSVY01, BCP13, ABGSZ13, ...]

[BGIRSVY01]: Virtual Black Box Obfuscation is impossible!

Circuits or Turing Machines

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Indistinguishability and Differing-Inputs Obfuscation

(P0, P1)

Left world:

aux

P̃

P̃

Right world:

Obf(P0)$P̃

Obf(P1)$P̃

Security of indistinguishability obfuscation (iO):

Obf is iO-secure if:
For all PT adversaries G that output

(P0, P1) such that P0 ≡ P1

no PT adversary D can distinguish left from right.

G D

b ∈ {left, right}

PT adversaries:
G
D

[BGIRSVY01]

computationally hard

– Generator;
– Distinguisher;

7

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Indistinguishability and Differing-Inputs Obfuscation

(P0, P1)

Left world:

aux

P̃

P̃

Right world:

Obf(P0)$P̃

Obf(P1)$P̃

Security of indistinguishability obfuscation (iO):

Obf is iO-secure if:
For all PT adversaries G that output

(P0, P1) such that P0 ≡ P1

no PT adversary D can distinguish left from right.

G D

b ∈ {left, right}

Obf is diO-secure if:
For all PT adversaries G that output

(P0, P1) such that it is computationally hard
to find x satisfying P0(x) ≠ P1(x)

no PT adversary D can distinguish left from right.

Security of differing-inputs obfuscation (diO):

PT adversaries:
G
D

[BGIRSVY01]

– Generator;
– Distinguisher;

8

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Indistinguishability and Differing-Inputs Obfuscation

(P0, P1)

Left world:

aux

P̃

P̃

Right world:

Obf(P0)$P̃

Obf(P1)$P̃

Security of indistinguishability obfuscation (iO):

Obf is iO-secure if:
For all PT adversaries G that output

(P0, P1) such that P0 ≡ P1

no PT adversary D can distinguish left from right.

G D

b ∈ {left, right}

(P0, P1)

aux

xG I
Obf is diO-secure if:
For all PT adversaries G that output

(P0, P1) such that it is computationally hard
to find x satisfying P0(x) ≠ P1(x)

no PT adversary D can distinguish left from right.

Security of differing-inputs obfuscation (diO):

PT adversaries:
G
D
I

[BGIRSVY01]

– Generator;
– Distinguisher;
– Inverter.

9

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Indistinguishability and Differing-Inputs Obfuscation

10

(P0, P1)

Left world:

aux

P̃

P̃

Right world:

Obf(P0)$P̃

Obf(P1)$P̃

Security of indistinguishability obfuscation (iO):

Obf is iO-secure if:
For all PT adversaries G that output

(P0, P1) such that P0 ≡ P1

no PT adversary D can distinguish left from right.

G D

b ∈ {left, right}

(P0, P1)

aux

xG I
Obf is diO-secure if:
For all PT adversaries G that output

(P0, P1) such that it is computationally hard
to find x satisfying P0(x) ≠ P1(x)

no PT adversary D can distinguish left from right.

Security of differing-inputs obfuscation (diO):

PT adversaries:
G
D
I

[BGIRSVY01]

– Generator;
– Distinguisher;
– Inverter.

(1) Polynomially diO-secure

(2) Sub-exponentially diO-secure

polynomially hard

sub-exponentially hard
We consider two security levels:

Bellare, Stepanovs, Waters - EUROCRYPT 2016

[SW13, ...]

Indistinguishability Obfuscation (iO)

11

Is iO achievable? Why should I care?!

[GGHRSW13, …]

Here is a candidate
construction! “iO as a central hub of cryptography”

We can build many crypto
primitives from iO!

Bellare, Stepanovs, Waters - EUROCRYPT 2016

[SW13, ...]

Indistinguishability Obfuscation (iO)

12

Is iO achievable? Why should I care?!

[GGHRSW13, …]

Here is a candidate
construction! “iO as a central hub of cryptography”

We can build many crypto
primitives from iO!

proposed

broken

Heavy, ad-hoc assumptions.
Constructions are getting broken.

Does iO exist?

Bellare, Stepanovs, Waters - EUROCRYPT 2016

[SW13, ...]

Indistinguishability Obfuscation (iO)

13

Is iO achievable? Why should I care?!

[GGHRSW13, …]

Here is a candidate
construction! “iO as a central hub of cryptography”

We can build many crypto
primitives from iO!

proposed

broken

Heavy, ad-hoc assumptions.
Constructions are getting broken.

Does iO exist?
We make progress towards
settling the existence of iO by
providing negative results for diO.

Candidate iO constructions conjectured to meet diO.
(Proven in idealized models by BR13, BGKPS13).

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Theorem ([GGHW14]): Polynomially secure diO for circuits does not exist if:
there exists an existentially unforgeable digital signature scheme DS, and
there exists a collision-resistant hash function H, and
there exists a special-purpose obfuscator for H and DS.

Implausibility of Differing-Inputs Obfuscation

A novel, ad-hoc assumption introduced by [GGHW14].
Is it more plausible than diO?

[GGHW14] Differing-inputs obfuscation is implausible!

14

[GGHW14]Bellare, Stepanovs, Waters - EUROCRYPT 2016

Theorem B. Polynomially secure diO for TMs does not exist if:
sub-exponentially secure one-way functions exist, and
sub-exponentially secure indistinguishability obfuscation for circuits exists.

Theorem A. Sub-exponentially secure diO for TMs does not exist if:
sub-exponentially secure one-way functions exist.

Our Results

15

The proof uses iO!

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Theorem B. Polynomially secure diO for TMs does not exist if:
sub-exponentially secure one-way functions exist, and
sub-exponentially secure indistinguishability obfuscation for circuits exists.

Theorem A. Sub-exponentially secure diO for TMs does not exist if:
sub-exponentially secure one-way functions exist.

Our Results

16

Type of programs Assumptions

[GGHW14] theorem Circuits Special-purpose obfuscation, …

Theorem A Turing Machines Sub-exponentially secure OWFs
[and sub-exponentially secure iO]

The proof uses iO!

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Theorem B. Polynomially secure diO for TMs does not exist if:
sub-exponentially secure one-way functions exist, and
sub-exponentially secure indistinguishability obfuscation for circuits exists.

Theorem A. Sub-exponentially secure diO for TMs does not exist if:
sub-exponentially secure one-way functions exist.

Our Results

17

Type of programs Assumptions

[GGHW14] theorem Circuits Special-purpose obfuscation, …

Theorem A Turing Machines Sub-exponentially secure OWFs
[and sub-exponentially secure iO]

[ABGSZ13, BCP14] FHE + diO for circuits + SNARKs diO for TMs.

Obtain a corollary for circuits from:

The proof uses iO!

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Theorem B. Polynomially secure diO for TMs does not exist if:
sub-exponentially secure one-way functions exist, and
sub-exponentially secure indistinguishability obfuscation for circuits exists.

Theorem A. Sub-exponentially secure diO for TMs does not exist if:
sub-exponentially secure one-way functions exist.

Our Results

18

Sub-exponential
assumptions?!

When natural problems are hard,
they appear to be sub-exponentially hard.

(Factoring, DLOG, LWE, SVP, ...).

Type of programs Assumptions

[GGHW14] theorem Circuits Special-purpose obfuscation, …

Theorem A Turing Machines Sub-exponentially secure OWFs
[and sub-exponentially secure iO]

The proof uses iO!

[ABGSZ13, BCP14] FHE + diO for circuits + SNARKs diO for TMs.

Obtain a corollary for circuits from:

Bellare, Stepanovs, Waters - EUROCRYPT 2016

[GGHW14] Attack

(C0, C1)

aux

G

Construct generator G using: digital signature scheme DS, “special-purpose obfuscator” spO, hash function H.

Let Obf be any obfuscator. It is not diO-secure if:
(1) It is easy to distinguish Obf(C0) from Obf(C1).
(2) It is hard to find x such that C0(x) ≠ C1(x).

19

Bellare, Stepanovs, Waters - EUROCRYPT 2016

d DS.Verify(vk, m, σ)
Return d

[GGHW14] Attack

(C0, C1)

aux = spO(C2)

G

Construct generator G using: digital signature scheme DS, “special-purpose obfuscator” spO, hash function H.

Generates a key pair (vk,sk) for DS.

Let Obf be any obfuscator. It is not diO-secure if:
(1) It is easy to distinguish Obf(C0) from Obf(C1).
(2) It is hard to find x such that C0(x) ≠ C1(x).

20

m H(C)̃
σ DS.Sign(sk, m)
b C(̃m, σ)
Return b

C2(C)̃:C0(m, σ):

C1(m, σ):

Return 0

Bellare, Stepanovs, Waters - EUROCRYPT 2016

d DS.Verify(vk, m, σ)
Return d

[GGHW14] Attack

(C0, C1)

aux = spO(C2)

G

Construct generator G using: digital signature scheme DS, “special-purpose obfuscator” spO, hash function H.

Generates a key pair (vk,sk) for DS.

Let Obf be any obfuscator. It is not diO-secure if:
(1) It is easy to distinguish Obf(C0) from Obf(C1).
(2) It is hard to find x such that C0(x) ≠ C1(x).

21

m H(C)̃
σ DS.Sign(sk, m)
b C(̃m, σ)
Return b

C2(C)̃:C0(m, σ):

C1(m, σ):

Return 0

b aux(C)̃
Return b

D(C,̃ aux):C2(C)̃ =
0 if C̃ is Obf(C0)

1 if C̃ is Obf(C1)

Bellare, Stepanovs, Waters - EUROCRYPT 2016

d DS.Verify(vk, m, σ)
Return d

[GGHW14] Attack

(C0, C1)

aux = spO(C2)

G

Construct generator G using: digital signature scheme DS, “special-purpose obfuscator” spO, hash function H.

Generates a key pair (vk,sk) for DS.

Let Obf be any obfuscator. It is not diO-secure if:
(1) It is easy to distinguish Obf(C0) from Obf(C1).
(2) It is hard to find x such that C0(x) ≠ C1(x).

22

m H(C)̃
σ DS.Sign(sk, m)
b C(̃m, σ)
Return b

C2(C)̃:C0(m, σ):

C1(m, σ):

Return 0

b aux(C)̃
Return b

D(C,̃ aux):C2(C)̃ =
0 if C̃ is Obf(C0)

1 if C̃ is Obf(C1)

[GGHW14]

spO is more plausible than diO!

Assume there exists spO that hides sk “sufficiently good”.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

If |m| ≠ k then return 0
d DS.Verify(vk, m, σ)
Return d

Our Attack

(M0, M1)

aux = iO(M2)

G

Construct generator G using: digital signature scheme DS, indistinguishability obfuscator iO.

Let Obf be any obfuscator. It is not diO-secure if:
(1) It is easy to distinguish Obf(M0) from Obf(M1).
(2) It is hard to find x such that M0(x) ≠ M1(x).

23

m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

We now use a hybrid argument to prove (2).

We change the construction of G as follows:
Replace 1. spO with iO.
Replace circuits with TMs.2.
Require |m| = k in M3. 1.
Remove hash function.4.

5. …

..

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Hybrid Argument

(M0, M1)

aux = iO(M2)

xG I
If |m| ≠ k then return 0
d DS.Verify(vk, m, σ)
Return d

m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Adversary I wins if it outputs x such that…

Hybrid game 0.

String of length k.

24

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Hybrid Argument

(M0, M1)

aux = iO(M2)

xG I
If |m| ≠ k then return 0
d DS.Verify(vk, m, σ)
Return d

m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m > “11…11”.

Hybrid game 0. Hybrid game 2k.

String of length k.

25

Adversary
cannot win.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Hybrid Argument

(M0, M1)

aux = iO(M2)

xG I
If |m| ≠ k then return 0
d DS.Verify(vk, m, σ)
Return d

m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…01”.

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “11…11”.

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m > “11…11”.

Hybrid game 0. Hybrid game 1. Hybrid game 2k-1. Hybrid game 2k.

…

26

String of length k. Adversary
cannot win.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Hybrid Argument

(M0, M1)

aux = iO(M2)

xG I
If |m| ≠ k then return 0
d DS.Verify(vk, m, σ)
Return d

m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…01”.

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “11…11”.

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m > “11…11”.

Hybrid game 0. Hybrid game 1. Hybrid game 2k-1. Hybrid game 2k.

…

27

sub-exp small sub-exp smallString of length k. Adversary
cannot win.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Hybrid Argument

(M0, M1)

aux = iO(M2)

xG I
If |m| ≠ k then return 0
d DS.Verify(vk, m, σ)
Return d

m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…01”.

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “11…11”.

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m > “11…11”.

Hybrid game 0. Hybrid game 1. Hybrid game 2k-1. Hybrid game 2k.

…

28

sub-exp small sub-exp small

sub-exp small

String of length k. Adversary
cannot win.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Hybrid Argument: A Single Transition

(M0, M1)

aux = iO(M2)

xG I
If |m| ≠ k then return 0
d DS.Verify(vk, m, σ)
Return d

m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…01”.

Hybrid game 0. Hybrid game 1.

29

sub-exp small

Bellare, Stepanovs, Waters - EUROCRYPT 2016

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Hybrid Argument: A Single Transition

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…01”.

Hybrid game 0. Hybrid game 1.

3 intermediate steps between every two hybrid games.

Game (0,A). Game (0,B).

We use consistent puncturable signature schemes.
In the spirit of puncturable PRFs. 30

(M0, M1)

aux = iO(M2)

xG I
If |m| ≠ k then return 0
d DS.Verify(vk, m, σ)
Return d

m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Consistent Puncturable Signature Schemes

31

We define a signature scheme DS that is:

DS.PKg DS.PSignsk σsk*

m* m (≠m*)

1. Puncturable.

2. Consistent.

DS.Signsk σ

DS.PSign σsk*

m (≠m*)
Every valid m
has the same σ
for both sk and sk*.

We require selective puncturable unforgeability:
PT adversary A:

Chooses a challenge message m1. *.
Receives (2. vk, sk*), where sk* is punctured at m*.
Is asked to forge a valid signature for m3. *.

Our construction follows Sahai-Waters signatures [SW13].

We build a consistent puncturable
signature scheme from iO and PPRF.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Hybrid Argument: A Single Transition

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…01”.

Hybrid game 0. Hybrid game 1.

Security of iO. Security of iO.

Game (0,A). Game (0,B).

32

(M0, M1)

aux

xG I
m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):

Security of DS.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

m M̃(m, σ)
If (m = m*) then return b*

σ DS.Sign(sk*, m)
b M̃(m, σ)
Return b

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Hybrid Argument: A Single Transition

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…01”.

Hybrid game 0. Hybrid game 1.

Security of iO. Security of iO.

Game (0,A). Game (0,B).

33

(M0, M1)

aux

xG I
m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃): M3(M̃):

aux = iO(M2) aux = iO(M3)

Security of DS.

Puncture sk at
m* = “00…00”.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

m M̃(m, σ)
If (m = m*) then return b*

σ DS.Sign(sk*, m)
b M̃(m, σ)
Return b

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Hybrid Argument: A Single Transition

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…01”.

Hybrid game 0. Hybrid game 1.

Security of iO. Security of iO.

Game (0,A). Game (0,B).

m ≥ “00…01”

34

(M0, M1)

aux

xG I
m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃): M3(M̃):

aux = iO(M2) aux = iO(M3)

m ≥ “00…00”

Security of DS.

Puncture sk at
m* = “00…00”.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

m M̃(m, σ)
If (m = m*) then return b*

σ DS.Sign(sk*, m)
b M̃(m, σ)
Return b

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…00”.

Hybrid Argument: A Single Transition

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid
message-signature
pair, and |m| = k,
and m ≥ “00…01”.

Hybrid game 0. Hybrid game 1.

Security of iO. Security of iO.

Game (0,A). Game (0,B).

m ≥ “00…01”

35

(M0, M1)

aux

xG I
m M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃): M3(M̃):

aux = iO(M2) aux = iO(M3) aux = iO(M2)

Revert back to
the original aux.

m ≥ “00…00”

Security of DS.

Puncture sk at
m* = “00…00”.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

P0

Parameter Dependencies

H
P1

diO iO

Pver

P2

P3

G

A lot of technical details omitted in this talk.

k

36

[BST14] Require |aux| < |P0| and |aux| < |P1| to avoid negative results.

[GGHW14] found a workaround by assuming
special-purpose obfuscation for TMs.

I want to obfuscate TMs that take
inputs of length ≤ a fixed poly.

Our attacks do not apply in this case.

Hard to avoid circular dependencies.

Limitations of our results:
1. TMs with poly-bounded inputs.

Our results do not apply if max input length of TMs is
apriori bounded by some polynomial.

2. «Short» auxiliary inputs.

Bellare, Stepanovs, Waters - EUROCRYPT 2016

Thank You!

37

P0

H
P1

diO iO

Pver

P2

P3

G

k

Bellare, Stepanovs, Waters - EUROCRYPT 2016

