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Our Main Result at a Glance

2

Differing-inputs obfuscation (Barak et al., 2001)

Differing-inputs obfuscation is implausible[GGHW14]:

… because it cannot coexist with another form 
of obfuscation that seems to be weaker.

This work: Differing-inputs obfuscation is impossible
… assuming sub-exponentially secure one-way 
functions.
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Obfuscation

ObfuscatorProgram P Program P*

no more useful 
than an oracle for

1. Correctness:

and
i.e. P(x) = P*(x) for all x.

2. Security:
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functionally equivalent,

Are there weaker forms of obfuscation that are achievable and useful?

PO
VGBO
iO
diO

– point-function obfuscation [C97, CMR98, LPS04, ...]
– virtual grey box obfuscation [BC10, ...]
– indistinguishability obfuscation [BGIRSVY01, GGHRSW13, SW13, ...]
– differing-inputs obfuscation [BGIRSVY01, BCP13, ABGSZ13, ...]

[BGIRSVY01]: Virtual Black Box Obfuscation is impossible!

Circuits or Turing Machines
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Indistinguishability and Differing-Inputs Obfuscation

(P0, P1)

Left world:

aux

P̃

P̃

Right world:

Obf(P0)$P̃

Obf(P1)$P̃

Security of indistinguishability obfuscation (iO):

Obf is iO-secure if:
For all PT adversaries G that output

(P0, P1) such that P0 ≡ P1

no PT adversary D can distinguish left from right.

G D

b ∈ {left, right}

PT adversaries:
G
D

[BGIRSVY01]

computationally hard

– Generator;
– Distinguisher;
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(P0, P1)

Left world:

aux

P̃

P̃

Right world:

Obf(P0)$P̃

Obf(P1)$P̃

Security of indistinguishability obfuscation (iO):

Obf is iO-secure if:
For all PT adversaries G that output

(P0, P1) such that P0 ≡ P1

no PT adversary D can distinguish left from right.

G D

b ∈ {left, right}

(P0, P1)

aux

xG I
Obf is diO-secure if:
For all PT adversaries G that output

(P0, P1) such that it is computationally hard
to find x satisfying P0(x) ≠ P1(x)

no PT adversary D can distinguish left from right.

Security of differing-inputs obfuscation (diO):

PT adversaries:
G
D
I

[BGIRSVY01]

– Generator;
– Distinguisher;
– Inverter.

(1) Polynomially diO-secure

(2) Sub-exponentially diO-secure

polynomially hard

sub-exponentially hard
We consider two security levels:
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[SW13, ...]

Indistinguishability Obfuscation (iO)
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Is iO achievable? Why should I care?!

[GGHRSW13, …]

Here is a candidate 
construction! “iO as a central hub of cryptography”

We can build many crypto 
primitives from iO!
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[SW13, ...]

Indistinguishability Obfuscation (iO)

13

Is iO achievable? Why should I care?!

[GGHRSW13, …]

Here is a candidate 
construction! “iO as a central hub of cryptography”

We can build many crypto 
primitives from iO!

proposed

broken

Heavy, ad-hoc assumptions.
Constructions are getting broken.

Does iO exist?
We make progress towards 
settling the existence of iO by 
providing negative results for diO.

Candidate iO constructions conjectured to meet diO. 
(Proven in idealized models by BR13, BGKPS13).
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Theorem ([GGHW14]): Polynomially secure diO for circuits does not exist if:
there exists an existentially unforgeable digital signature scheme DS, and
there exists a collision-resistant hash function H, and
there exists a special-purpose obfuscator for H and DS.

Implausibility of Differing-Inputs Obfuscation

A novel, ad-hoc assumption introduced by [GGHW14]. 
Is it more plausible than diO?

[GGHW14] Differing-inputs obfuscation is implausible!

14
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Theorem B. Polynomially secure diO for TMs does not exist if:
sub-exponentially secure one-way functions exist, and
sub-exponentially secure indistinguishability obfuscation for circuits exists.

Theorem A. Sub-exponentially secure diO for TMs does not exist if:
sub-exponentially secure one-way functions exist.

Our Results

15

The proof uses iO!
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Type of programs Assumptions

[GGHW14] theorem Circuits Special-purpose obfuscation, …

Theorem A Turing Machines Sub-exponentially secure OWFs
[and sub-exponentially secure iO]
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Sub-exponential 
assumptions?!

When natural problems are hard,
they appear to be sub-exponentially hard.

(Factoring, DLOG, LWE, SVP, ...).

Type of programs Assumptions
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[GGHW14] Attack

(C0, C1)

aux

G

Construct generator G using: digital signature scheme DS, “special-purpose obfuscator” spO, hash function H.

Let Obf be any obfuscator. It is not diO-secure if:
(1) It is easy to distinguish Obf(C0) from Obf(C1).
(2) It is hard to find x such that C0(x) ≠ C1(x).

19
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d      DS.Verify(vk, m, σ)
Return d

[GGHW14] Attack

(C0, C1)

aux = spO(C2)

G

Construct generator G using: digital signature scheme DS, “special-purpose obfuscator” spO, hash function H.

Generates a key pair (vk,sk) for DS.

Let Obf be any obfuscator. It is not diO-secure if:
(1) It is easy to distinguish Obf(C0) from Obf(C1).
(2) It is hard to find x such that C0(x) ≠ C1(x).

20

m      H(C)̃
σ DS.Sign(sk, m)
b C(̃m, σ)
Return b

C2(C)̃:C0(m, σ):

C1(m, σ):

Return 0
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Generates a key pair (vk,sk) for DS.
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m      H(C)̃
σ DS.Sign(sk, m)
b C(̃m, σ)
Return b

C2(C)̃:C0(m, σ):

C1(m, σ):

Return 0

b      aux(C)̃
Return b

D(C,̃ aux):C2(C)̃ = 
0  if C̃ is Obf(C0)

1  if C̃ is Obf(C1)
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m      H(C)̃
σ DS.Sign(sk, m)
b C(̃m, σ)
Return b

C2(C)̃:C0(m, σ):

C1(m, σ):

Return 0

b      aux(C)̃
Return b

D(C,̃ aux):C2(C)̃ = 
0  if C̃ is Obf(C0)

1  if C̃ is Obf(C1)

[GGHW14]

spO is more plausible than diO!

Assume there exists spO that hides sk “sufficiently good”.
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If |m| ≠ k then return 0
d      DS.Verify(vk, m, σ)
Return d

Our Attack

(M0, M1)

aux = iO(M2)

G

Construct generator G using: digital signature scheme DS, indistinguishability obfuscator iO.

Let Obf be any obfuscator. It is not diO-secure if:
(1) It is easy to distinguish Obf(M0) from Obf(M1).
(2) It is hard to find x such that M0(x) ≠ M1(x).

23

m     M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

We now use a hybrid argument to prove (2).

We change the construction of G as follows:
Replace 1. spO with iO.
Replace circuits with TMs.2.
Require |m| = k in M3. 1.
Remove hash function.4.

5. …

..

Bellare, Stepanovs, Waters - EUROCRYPT 2016



Hybrid Argument

(M0, M1)

aux = iO(M2)

xG I
If |m| ≠ k then return 0
d      DS.Verify(vk, m, σ)
Return d

m     M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…00”.

Adversary I wins if it outputs x such that…

Hybrid game 0.

String of length k.

24
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Hybrid Argument
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aux = iO(M2)

xG I
If |m| ≠ k then return 0
d      DS.Verify(vk, m, σ)
Return d

m     M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…00”.

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m > “11…11”.

Hybrid game 0. Hybrid game 2k.

String of length k.

25

Adversary 
cannot win.
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Hybrid Argument

(M0, M1)

aux = iO(M2)

xG I
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x = (m, σ) is a valid 
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Adversary I wins if it outputs x such that…

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…01”.

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “11…11”.

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m > “11…11”.

Hybrid game 0. Hybrid game 1. Hybrid game 2k-1. Hybrid game 2k.

…
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String of length k. Adversary 
cannot win.
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sub-exp small sub-exp smallString of length k. Adversary 
cannot win.
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sub-exp small sub-exp small

sub-exp small

String of length k. Adversary 
cannot win.
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Hybrid Argument: A Single Transition

(M0, M1)

aux = iO(M2)

xG I
If |m| ≠ k then return 0
d      DS.Verify(vk, m, σ)
Return d

m     M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…00”.

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…01”.

Hybrid game 0. Hybrid game 1.

29

sub-exp small
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x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…00”.

Hybrid Argument: A Single Transition

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…01”.

Hybrid game 0. Hybrid game 1.

3 intermediate steps between every two hybrid games.

Game (0,A). Game (0,B).

We use consistent puncturable signature schemes.
In the spirit of puncturable PRFs. 30

(M0, M1)

aux = iO(M2)

xG I
If |m| ≠ k then return 0
d      DS.Verify(vk, m, σ)
Return d

m     M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):M0(m, σ):

M1(m, σ):

Return 0
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Consistent Puncturable Signature Schemes

31

We define a signature scheme DS that is:

DS.PKg DS.PSignsk σsk*

m* m (≠m*)

1. Puncturable.

2. Consistent.

DS.Signsk σ

DS.PSign σsk*

m (≠m*)
Every valid m
has the same σ
for both sk and sk*.

We require selective puncturable unforgeability:
PT adversary A:

Chooses a challenge message m1. *.
Receives (2. vk, sk*), where sk* is punctured at m*.
Is asked to forge a valid signature for m3. *.

Our construction follows Sahai-Waters signatures [SW13].

We build a consistent puncturable
signature scheme from iO and PPRF.

Bellare, Stepanovs, Waters - EUROCRYPT 2016



x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…00”.

Hybrid Argument: A Single Transition

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…01”.

Hybrid game 0. Hybrid game 1.

Security of iO. Security of iO.

Game (0,A). Game (0,B).

32

(M0, M1)

aux

xG I
m     M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃):

Security of DS.
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m     M̃(m, σ)
If (m = m*) then return b*

σ DS.Sign(sk*, m)
b M̃(m, σ)
Return b

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…00”.

Hybrid Argument: A Single Transition

Adversary I wins if it outputs x such that…

x = (m, σ) is a valid 
message-signature 
pair, and |m| = k,
and m ≥ “00…01”.

Hybrid game 0. Hybrid game 1.

Security of iO. Security of iO.

Game (0,A). Game (0,B).
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(M0, M1)

aux

xG I
m     M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃): M3(M̃):

aux = iO(M2) aux = iO(M3)

Security of DS.

Puncture sk at
m* = “00…00”.
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(M0, M1)

aux

xG I
m     M̃(m, σ)
σ DS.Sign(sk, m)
b M̃(m, σ)
Return b

M2(M̃): M3(M̃):

aux = iO(M2) aux = iO(M3) aux = iO(M2)

Revert back to 
the original aux.

m ≥ “00…00”

Security of DS.

Puncture sk at
m* = “00…00”.
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P0

Parameter Dependencies

H
P1

diO iO

Pver

P2

P3

G

A lot of technical details omitted in this talk.

k

36

[BST14] Require |aux| < |P0| and |aux| < |P1| to avoid negative results.

[GGHW14] found a workaround by assuming
special-purpose obfuscation for TMs.

I want to obfuscate TMs that take 
inputs of length ≤ a fixed poly.

Our attacks do not apply in this case.

Hard to avoid circular dependencies.

Limitations of our results:
1. TMs with poly-bounded inputs.

Our results do not apply if max input length of TMs is 
apriori bounded by some polynomial. 

2. «Short» auxiliary inputs.
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Thank You!
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