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Since ¢(a) = ¢(B), we get a relation.
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NUMBER FIELD SIEVE FOR DLP IN Fpn
Choose f(x), g(x) € Z[x|, such that

f(x) mod p and g(x) mod p, have a common irreducible factor
¢(x) of degree n over .

Q) = 2L Q(8) = L and Fpn := 28 — B, (m), m € Fp.

fx))” §(x)) (p(x)
(x) Kalkbrener #(x)

l [Res(f, ¢) x Res(g, )| L
P()Or1=]] a; i $(8)0,=[1b;
FactorRes(f.0) | ~ (Iflloollglloc) 'E€@e8/ 8812/t | Bactor Res(g. )
! where t = deg(¢) + 1 and !
ooy = [ Lo . 2/t Tt o(8)"2=u, [1b"
(Ideal to Elerlnent) Coefficient(¢) [_E E ] (Ideal to Element)




NOTATION:
Let o(x) = x" + ¢, 1x" L+ -+ 4+ p1x + o and r > deg ().

p px°
Mcp,r — p pxn
o ©(x)

wo w1 o a1 1Y e(x)

Apply the LLL algorithm to M, ; and let the first row of the
resulting LLL-reduced matrix be [g0, 41, ..., </—1.9/]. Define

gx) = go+gix+ g1 +gx 1)

Notation: g = LLL (M., ;)



SOME OF THE POLYNOMIAL SELECTION METHODS
Given n and p, choose f(x), g(x) € Z[x], such that

f(x) mod p and g(x) mod p, have a common irreducible factor
¢(x) of degree n over F).



SOME OF THE POLYNOMIAL SELECTION METHODS
Given n and p, choose f(x), g(x) € Z[x], such that

f(x) mod p and g(x) mod p, have a common irreducible factor
¢(x) of degree n over F).

Algorithm: Generalised Joux-Lercier(GJL)[Barbulescu et al.,
D. Matyukhin]
Letr > n;
repeat
» Choose f(x) irr of deg (r + 1) in Z[x], having small
coefficients(= O(Inp)).
» Modulo p, f(x) has a factor ¢(x) of degree n.
> g(x) = LLL (M)

until f(x) and g(x) are irr over Z and ¢(x) is irr over [Fy;

Note:  deg(f)=r+1 and deg(g)=r
Ifllc = O(Inp) and |gfl =0 (pn/ml)\
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SOME OF THE POLYNOMIAL SELECTION METHODS
Given n and p, choose f(x), g(x) € Z[x], such that

f(x) mod p and g(x) mod p, have a common irreducible factor
¢(x) of degree n over F).

Algorithm: Conjugation Method(Conj) [Barbulescu et al.]
Letr > n;
repeat

» Choose a quadratic monic y(x) irr in Z[x], having small
coefficients(= O(Inp)) and has a root t in [,.

» Choose go(x) and g1 (x) with small coefficients such that
deg g1 < deggo = n.

» Let (1,v) be such that t = 1/v mod p.

> g(x) = vgo(x) + ugi(x), f(x) = Resy (u(y), go(x) +y g1(x)).

until f(x) and g(x) are irr over Z and (x) is irr over IFp.;
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BASIC IDEA

We note the following:
» Both GJL and Conjugation methods use LLL, directly or
indirectly.
» GJL uses all the coefficients of ¢(x) for doing LLL.
» Conjugation uses only one coefficient for LLL.

» In there anything in between? The answer is YES and is
given by a new polynomial selection algorithm which both
subsumes and generalises to GJL and Conjugation method.

» The new polynomial selection algorithm is parametrised
by a divisor d of n and a value » > n/d.



Algorithm: A: A new method of polynomial selection.

Input: p, n, d (a factor of n) and r > n/d.
Output: f(x), g(x) and ¢(x).

Letk =n/d;
repeat
Randomly choose a monic irr A;(x) with small coeff.:
deg A; =r+ 1; mod p, Ai(x) has an irr factor A;(x) of deg k.
Choose monic Cy(x) and Cq(x): degCo = d and deg C; < d.
Define
f(x) = Resy(A1(y), Colx) +yCi(x));
p(x) = Resy(Az(y), Co(x) +yCi(x)) mod p;
w(x) = LLL(MAz,r);
8(x) = Resy (¢(y), Co(x) +yCr(x)).

until f(x) and g(x) are irr over Z and ¢(x) is irr over Fy.;

return f(x), g(x) and ¢(x).




Algorithm: A: A new method of polynomial selection.

Input: p, n, d (a factor of n) and r > n/d.

Output: f(x), g(x) and ¢(x).

Letk =n/d;
repeat

Table: Parameter estimates of various polynomial selection methods(t = 2)

Methods degf |degg | Ifllc | lIglloo | IflloollgllooE 8/ *e58)
JLSV1 n n | Quw | Qm EZQn

GIL (r > n) r+1 r | O(lnp) Q1 E2H QT
Conjugation 2n n O(Inp) Q% E3n Qi
A@n,r>n/d) | dr+1) | dr | O(np) | Qs |  EICrIQ/ir+D)

until f(x) and g(x) are irr over Z and ¢(x) is irr over IFy.;

return f(x), g(x) and ¢(x).




EXAMPLE 1
Letn = 6, and p is a 201-bit prime given below.

P = 1606938044258990275541962092341162602522202993782792835361211

(Taking d=1andr =n/d, we get

3 15630 X% — 30664 X — 23239

fx) = x" +18x° +99x° —107x* — 3470
g(X) = 712965136783466122384156554261504665235609243446869 X© + 16048203858903
260691766216702652575435281807544247712 X° + 14867720774814154920358989
0852868028274077107624860184 X* -+ 7240853845391439257955648357229262561
71920852986660372 X° + 194693204195493982969795038496468458378024972218
5345772 X% + 2718971797270235171234259793142851416923331519178675874 X

—+1517248296800681060244076172658712224507653769252953211

Note that ||g||oo ~ 2'8.
-
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Letn = 6, and p is a 201-bit prime given below.

P = 1606938044258990275541962092341162602522202993782792835361211

(Taking d=1andr =n/d, we get

(Taking d=2andr =n/d, we get

flx) = a®~o" —528 50 — 1812 ~ 40223 — 801 %% — 6330 — 787

g (X) = 833480932500516492505935839185008193696457787 x6 —+ 2092593616641287655
065740032896986343580698615 x5 -+ 1298540899568952261791537743468335194
3188533320 X4 —+ 21869741590966357897620167461539967141532970622 X3 +6
4403097224634262677273803471992671747860968564 JC2 —+ 558647116952815842
83909455665521092749502793807 X + 921778354059077827252784356704871327
10722661831

(z

Note that ||g||oo = 2'%.
=




EXAMPLE 1
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(Taking d=3andr =n/d, we get

()= =a30552808 1o1Esoss 174 98 65105296

—17ax* — 76 %% — 8642 — 96x — 42

g(x) = 2889742364508381557593312392497801006712 X° - 83633695370646306085610
87765146274738500 X° + 10828078806524085705506412783408772941877 X* +
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(z

Note that ||g||oo = 2!%.
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EXAMPLE 1
Letn = 6, and p is a 201-bit prime given below.

P = 1606938044258990275541962092341162602522202993782792835361211

(Taking d=1andr =n/d, we get W
(Taking d=2andr =n/d, we get
(Taking d=3andr =n/d, we get

(. . )
Taking d = 6 and r = n/d, we get
fla) = a2 320052 10068 22 53 38 s’ - 16350
+1842° + 177 4 166 2% + 10342 4+ 72% + 48
g(X) = —666878138402353195498832669848 X° — 1867253271074924746011849188889 X°

—5601759813224774238035547566667 X4 — 6668753801765210948063915265053 X3

—4268003536420067847037882226971 X2 — 6935516090029480629033212906363 X

N —7469013084299698984047396755556

N
| Note that ||g]|co ~ 2102
&




EXAMPLE 2
Letn = 2, and p is a 201-bit prime given below.

P = 1606938044258990275541962092341162602522202993782792835301611

Takingd =2 and r =n/d =1, we get

@) = #=P=2P 7=

g(x) = 717175561486984577278242843019 xz —+ 2189435313197775056442946543188 X
+2906610874684759633721189386207

Note that ||g]joo = 21! . If we take d = 2 and r = 2, we get the

following set of polynomials where ||g]|oo &~ 2% .

fx) = 2% —ax° —3x* — 1472 —188%% —157x — 2

15087279002722300985 x4 —+ 124616743720753879934 x3

e
)
|

—+ 451785460058994237397 Xz ~+ 749764394939964245000 X
—+ 567202989572349792620




ASYMPTOTIC COMPLEXITY ANALYSIS
Recap (Fo where Q = p")

P(x) o(x)

| / \ l
$(0)O; : $(8)02=T1b; I

=[1a; ¢ l
(Factor Reé(f , ) (Factor Res(g, ¢))
| N |
$(a)1=uy []a;i \”‘\ ¢(B)'2=uz [T bi"
(Ideal to Elerlnent) (Ideal to Ele;nent)

7 - prime ideals a; in O, either having norm less than B
= or lying above the prime factors of /(f)

7 prime ideals b; in O, either having norm less than B
2 or lying above the prime factors of /(g)



ASYMPTOTIC COMPLEXITY ANALYSIS

» The size of the factor basis = B1+°(1) &~ B. Cost of Linear
Algebra ~ BZ.

» Let E be such that the coefficients of ¢ are in [—3E%/!, 1E?/*]
i.e. ||$||oo ~ E?/*.Total number of polynomial considered is
E? , which is, in fact, the cost of relation collection step.
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Let 7 be the probability of getting a single relation.
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» Cost(L. A.)=Cost(R. C.)

» Sufficient Relations
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ASYMPTOTIC COMPLEXITY ANALYSIS
» The size of the factor basis = B1+°(1) &~ B. Cost of Linear
Algebra ~ BZ.
» Let E be such that the coefficients of ¢ are in [—3E%/!, 1E?/*]
i.e. ||$||oo ~ E?/*.Total number of polynomial considered is
E? , which is, in fact, the cost of relation collection step.

Let 7 be the probability of getting a single relation.

Requirements:

» Cost(L. A.)=Cost(R. C.)
» Sufficient Relations

()
o

E?’r=B and B>=E> = E=B=n""

Let B = Lg(b,cy) =E, forsome 0 <b <1




ASYMPTOTIC COMPLEXITY ANALYSIS..
7 is Computed using Canfield-Erdés-Pomerance theorem.

Canfield-Erdos-Pomerance (CEP) theorem

Let m = ¥(I', B) be the probability that a random positive
integer which is at most I" is B-smooth. Let I' = Ly(z, {) and
B = Lg(b,cp). Then

(U(,B)™' = Lo <z —b,(z— b)> . )



ASYMPTOTIC COMPLEXITY ANALYSIS..

7 is Computed using Canfield-Erdés-Pomerance theorem.
Canfield-Erd6s-Pomerance (CEP) theorem

Let m = ¥(I', B) be the probability that a random positive
integer which is at most I" is B-smooth. Let I' = Ly(z, {) and
B = Lg(b,cp). Then

(U(,B)™' = Lo <z —b,(z— b)C> . )

We have I' equal to,
[Res(f, #) x Res(g; ¢)|

%

(Iflloollglloo)! = x EX(desf+degs)/t
0O (EZd(2r+1 « Q (t=1)/(d r+1)))




ASYMPTOTIC COMPLEXITY ANALYSIS..
We have,

p = Lo(a,cy) and B = Lg(b, cp) (3)

Lemma
Let n = kd for positive integers k and d. Using the expressions for p
and E(= B) given by (3), we obtain the following.

EdCr+1) Lo (1 —a+b, m,ggn) : “
tfil . key(t—1)
Qd( o= LQ (El, (pr-i-l) ) :




BOUNDARY CASE

Letp = Lo(2/3,¢y) for some 0 < ¢, < 1. Equation (4) becomes
E%d(zrﬂ)

LQ l+b 2c,(2r+1)
3 9
Qd(tr:tll)

cpkt >§
= Lo (3555

©)




BOUNDARY CASE

Letp = Lo(2/3,¢y) for some 0 < ¢, < 1. Equation (4) becomes

24 2¢,(2r+1
e = iall a2

Qi = Lo (3. ©

3 (r+1)

Choosing b=1/3, we get

2 2¢,(2r+1)  kep(t—1
I' = [Res(f, ¢) x Res(g,¢)| = Lg (3, Cb(q;{:‘ ) C(r;(—i_ . ))

Using CEP, we get

i <; | % (2(2(; : D iip((rtll))))




BOUNDARY CASE..

1

Since B=n"", we get
1/22r+1 ke,(t —1
wm (2 o )). ©
cpkt cp(r+1)

Solving the quadratic for ¢, and choosing the positive root gives

C2r+1 2r +1\?  kep(t—1)
= Bkt +\/( 3c,,kt> SV @)

Overall Complexity is given by Lo(1/3,2¢;).



NEW COMPLEXITY TRADE-OFFS FOR NFS

2Cb

191

(4,1,1)

(3,1,1)

NFS-GJL

—NFS-A(t,k.r)
--NFS-Conj.

(23,3)

Complexity((48/9)/%).

4

10

P



NEW COMPLEXI

2Cb

191

1.8}

(4,1,1)

(3,1,1)

(64/9)'/3, the complexity of GJL method.
L

Fork=1andt = 2, we have

o er+1)? @ 2r+1
Cuoms(rap) =20 =243t 3+ 1) 1| 35 A1)
Solving OCnrs/dcp = 0, we get
1
(85 16, 10 2\i
cp7<3r3+3r+3r+3> = p1(r) )

p1(1) = (12)'73 and Cnrs(1, p1(1)) = (48/8)'/°

{Cnrs(r, p1(r))},~; is monotonic increasing and coverges to

_/

(2,1,4) NES-A

I 1 I !

4 6 8 10



MULTIPLE NUMBER FIELD SIEVE ANALYSIS

Zx]

x
r~
o . el Yy
Vo !
SIS

Q1)  Qa2) Qo) Qo)  Qav) Q(ayi1)

~\

]Fp (m) — Fpﬂ

Figure: A work-flow of MNFS.



MULTIPLE NUMBER FIELD SIEVE ANALYSIS

fi(x) mod p should have a common irreducible factor ¢(x) of
degree n over [F,.

aV+1)

T Q) Q) Qo

]Fp (m) — Fpﬂ

Figure: A work-flow of MNFS.



MULTIPLE NUMBER FIELD SIEVE ANALYSIS

fi(x) mod p should have a common irreducible factor ¢(x) of
degree n over [F,.

Q(aV-H)

: Q(ej)  Q(av)
Variant 1 Image\\ ‘///
¢(x) € Z[x] needs to be

smooth in at least any of = Fpn
the two number fields.
Figure: A work-flow of MNFS.



MULTIPLE NUMBER FIELD SIEVE ANALYSIS

fi(x) mod p should have a common irreducible factor ¢(x) of
degree n over [F,.

Qo) Qlav) Qavsr)

Variant 2: Image of ¢(x)
Variant 1 Image of needs to be smooth in
¢(x) € Z[x] needs to be the first number field

smooth in at least any of = Fpn and at least one of the

the two number fields. other V number fields.
Figure: A work-flow of MNFS.




POLYNOMIAL SELECTION IN MNFS
Recall that,

v Algorithm A produces f(x) and g(x) of degrees d(r + 1)
and dr respectively.

v g(x) = Res, (1:(y), Co(x) + yC1(x)) where
(x) = LLL(Ma, ).

> Letg1(x) = g().
» 22(x) = Resy(¢'(v), Co(x) + yCi(x)), where ¢'(x) be the
polynomial defined by the second row of the matrix

LLL(My, ).
» gi(x) = sig1(x) + t;g2(x), for i = 3,..., V. Note that the
coefficients s; and t; are of the size of v/V.

All the g;’s have degree dr. Asymptotically [|¢]|occ = [|[¥'[|oc =
QY/W(r+1)),




ASYMPTOTIC ANALYSIS OF MNFS

» Let B and B’ be the bounds on the norms of the ideals for
factor basis defined by f and each of the g;’s respectively.

» So, the size of the entire factor basis is B+ VB'. Let B ~ VB'.

» Cost of linear algebra is 4B> ~ B2 .

» Asbefore, let ||¢] s ~ E?/, and so the cost of relation

collection step is EZ .
» Let 7 be the probability of getting a relation.



ASYMPTOTIC ANALYSIS OF MNFS

» Let B and B’ be the bounds on the norms of the ideals for
factor basis defined by f and each of the g;’s respectively.

» So, the size of the entire factor basis is B+ VB'. Let B ~ VB'.

» Cost of linear algebra is 4B> ~ B2 .

» Asbefore, let ||¢] s ~ E?/, and so the cost of relation
collection step is EZ .

» Let 7 be the probability of getting a relation.

Requirements:

» Cost(L. A.)=Cost(R. C.)
» Sufficient Relations

E2r =B and B =FE2 = E=B=n"1



ASYMPTOTIC ANALYSIS OF MNEFS..

Similar to NFS case, let 7 be the probability of getting a relation.

m = WU(['1,B) V¥([y,B)where'; = Resy(f(x),d(x))
Iy = Res(gi(x), ¢(x))

We have all the necessary tools available to compute 7 i.e.,

9]0 = E*, |If |oc = O(lnp) and [|g|oc = QY+



ASYMPTOTIC ANALYSIS OF MNFS..
Let,
B = LQ (1/3,Cb) and V = LQ (1/3,CU) , SO B = LQ (1/3,Cb — CU) o

Assume p = Lq(3, ), proceeding similar to the NFS case, we
get

o - w2 \/r(3r+2) cpk(t — 1) T,

6ktc, (3ktcy)? 3(r+1) "
Hence the overall complexity of MNFS for the boundary case is
LQ (%, ZCb).
Fort=2and k = 1:

c Br+2)r 2r+1
C =20, =2 P + :
MNFS (€p, ) = 26p \/3 r+1) 36c2 3¢




2¢;,

NEW COMPLEXITY TRADE-OFFS FOR MNFS

2.1+

— MNFS-A(t,k,r)
--MNFS-Conj.

«+min complexity(r)

19}

18

(2,1,1)

Min. Complexity(1.71).

L

4

I This equation is incorrect in the proceedings version. -




NEW COMPLEXITY TRADE-OFFS FOR MNFS

e N
Solving dCyings/dcp = 0, we get
2¢, E
@ = (%r3+%r2+é 13r2+10r+1(2r2+3r+1)+%r+é)
21y = p(r) (say). an
1
= )3 _ 3+V/3(11+44V6)
p(1) = (2\f6+ 3) and Cynrs (1, p(1)) = (8(7+3v) "
2t 1/3
i _ (2x 13V +46)) "
Lim mnrs(r, p(r) = BT — .
N\ J
8.L1) MNFS-GJL
19}
1.8}
171 (2,1,1)Min' Complexity(1.71).
L . . . . ¢,
0 2 4 6 8 10

IThis equation is incorrect in the proceedings version.



NEW COMPLEXITY TRADE-QOFFS
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