New Complexity Trade-Offs for the (Multiple) Number Field Sieve Algorithm in Non-Prime Fields

Palash Sarkar and Shashank Singh

Indian Statistical Institute, Kolkata

May, 2016

Eurocrypt 2016

Choose $f(x), g(x) \in \mathbb{Z}[x]$, such that

 $f(x) \operatorname{mod} p$ and $g(x) \operatorname{mod} p$, have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

$$\mathbb{Q}(\alpha) := \frac{\mathbb{Q}[x]}{\langle f(x) \rangle}, \, \mathbb{Q}(\beta) := \frac{\mathbb{Q}[x]}{\langle g(x) \rangle} \text{ and } \mathbb{F}_{p^n} := \frac{\mathbb{F}_p[x]}{\langle \varphi(x) \rangle} = \mathbb{F}_p(m), \, m \in \mathbb{F}_{p^n}.$$

Choose $f(x), g(x) \in \mathbb{Z}[x]$, such that

 $f(x) \operatorname{mod} p$ and $g(x) \operatorname{mod} p$, have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

$$\mathbb{Q}(\alpha) := \frac{\mathbb{Q}[x]}{\langle f(x) \rangle}, \, \mathbb{Q}(\beta) := \frac{\mathbb{Q}[x]}{\langle g(x) \rangle} \text{ and } \mathbb{F}_{p^n} := \frac{\mathbb{F}_p[x]}{\langle \varphi(x) \rangle} = \mathbb{F}_p(m), \, m \in \mathbb{F}_{p^n}.$$

Choose $f(x), g(x) \in \mathbb{Z}[x]$, such that

 $f(x) \operatorname{mod} p$ and $g(x) \operatorname{mod} p$, have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

$$\mathbb{Q}(\alpha) := \frac{\mathbb{Q}[x]}{\langle f(x) \rangle}, \, \mathbb{Q}(\beta) := \frac{\mathbb{Q}[x]}{\langle g(x) \rangle} \text{ and } \mathbb{F}_{p^n} := \frac{\mathbb{F}_p[x]}{\langle \varphi(x) \rangle} = \mathbb{F}_p(m), \, m \in \mathbb{F}_{p^n}.$$

 $\phi(x)$ \downarrow $\phi(\beta)\mathcal{O}_2 = \prod_i \mathfrak{b}_i^{\ell_j}$ (Ideal Fact.) \downarrow $\phi(\beta)^{h_2} = u_2 \prod_i b_i^{\ell_i}$ (Ideal to Element)

Since $\overline{\phi(\alpha)} = \overline{\phi(\beta)}$, we get a relation.

Choose $f(x), g(x) \in \mathbb{Z}[x]$, such that

 $f(x) \operatorname{mod} p$ and $g(x) \operatorname{mod} p$, have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

$$\mathbb{Q}(\alpha) := \frac{\mathbb{Q}[x]}{\langle f(x) \rangle}, \, \mathbb{Q}(\beta) := \frac{\mathbb{Q}[x]}{\langle g(x) \rangle} \text{ and } \mathbb{F}_{p^n} := \frac{\mathbb{F}_p[x]}{\langle \varphi(x) \rangle} = \mathbb{F}_p(m), \, m \in \mathbb{F}_{p^n}.$$

Choose $f(x), g(x) \in \mathbb{Z}[x]$, such that

 $f(x) \operatorname{mod} p$ and $g(x) \operatorname{mod} p$, have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

$$\mathbb{Q}(\alpha) := \frac{\mathbb{Q}[x]}{\langle f(x) \rangle}, \mathbb{Q}(\beta) := \frac{\mathbb{Q}[x]}{\langle g(x) \rangle} \text{ and } \mathbb{F}_{p^n} := \frac{\mathbb{F}_p[x]}{\langle \varphi(x) \rangle} = \mathbb{F}_p(m), m \in \mathbb{F}_{p^n}.$$

$$\phi(x)$$

$$\downarrow$$

$$\phi(\alpha)\mathcal{O}_1 = \prod \mathfrak{a}_i^{e_i}$$
Factor $\operatorname{Res}(f, \phi)$

$$\downarrow$$

$$\phi(\alpha)^{h_1} = u_1 \prod_i a_i^{e_i}$$
(Ideal to Element)

Kalkbrener

$$|\operatorname{Res}(f,\phi) \times \operatorname{Res}(g,\phi)|$$

$$\approx (\|f\|_{\infty} \|g\|_{\infty})^{t-1} E^{(\deg f + \deg g)2/t}$$

where $t = \deg(\phi) + 1$ and

Coefficient(
$$\phi$$
) $\in \left[-E^{2/t}, E^{2/t} \right]$

$$\phi(x)$$

$$\downarrow$$

$$\phi(\beta)\mathcal{O}_2 = \prod_i \mathfrak{b}_i^{\ell_i}$$
Factor $\operatorname{Res}(g, \phi)$

$$\downarrow$$

$$\phi(\beta)^{h_2} = u_2 \prod_i b_i^{\ell_i}$$
(Ideal to Element)

NOTATION:

Let $\varphi(x) = x^n + \varphi_{n-1}x^{n-1} + \cdots + \varphi_1x + \varphi_0$ and $r \ge \deg(\varphi)$.

$$M_{\varphi,r} = \begin{bmatrix} p & & & & \\ & \ddots & & & \\ & & \ddots & & \\ & & p & & \\ & \varphi_0 & \varphi_1 & \cdots & \varphi_{n-1} & 1 & \\ & & \ddots & \ddots & & \\ & & \varphi_0 & \varphi_1 & \cdots & \varphi_{n-1} & 1 \end{bmatrix} \begin{bmatrix} px^0 \\ \vdots \\ px^n \\ \varphi(x) \\ \vdots \\ x^{r-n}\varphi(x) \end{bmatrix}$$

Apply the LLL algorithm to $M_{\varphi,r}$ and let the first row of the resulting LLL-reduced matrix be $[g_0, g_1, \dots, g_{r-1}, g_r]$. Define

$$g(x) = g_0 + g_1 x + \dots + g_{r-1} x^{r-1} + g_r x^r.$$
 (1)

Given *n* and *p*, choose $f(x), g(x) \in \mathbb{Z}[x]$, such that

 $f(x) \operatorname{mod} p$ and $g(x) \operatorname{mod} p$, have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

Given *n* and *p*, choose $f(x), g(x) \in \mathbb{Z}[x]$, such that

 $f(x) \operatorname{mod} p$ and $g(x) \operatorname{mod} p$, have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

Algorithm: Generalised Joux-Lercier(GJL)[Barbulescu et al., D. Matyukhin]

 $\overline{\text{Let } r > n}$;

repeat

- ► Choose f(x) irr of deg (r + 1) in $\mathbb{Z}[x]$, having small coefficients(= $O(\ln p)$).
- ▶ Modulo p, f(x) has a factor $\varphi(x)$ of degree n.
- $ightharpoonup g(x) = LLL(M_{o,r})$

until f(x) and g(x) are irr over \mathbb{Z} and $\varphi(x)$ is irr over \mathbb{F}_v ;

Note:
$$\deg(f)=r+1$$
 and $\deg(g)=r$
$$\|f\|_{\infty}=O(\ln p) \quad \text{and} \quad \|g\|_{\infty}=O(p^{n/(r+1)}) = O(p^{n/(r+1)})$$

Given *n* and *p*, choose $f(x), g(x) \in \mathbb{Z}[x]$, such that

 $f(x) \operatorname{mod} p$ and $g(x) \operatorname{mod} p$, have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

Algorithm: Conjugation Method(Conj) [Barbulescu et al.]

Let r > n;

repeat

- ► Choose a quadratic monic $\mu(x)$ irr in $\mathbb{Z}[x]$, having small coefficients(= $O(\ln p)$) and has a root $\operatorname{tin} \mathbb{F}_p$.
- ► Choose $g_0(x)$ and $g_1(x)$ with small coefficients such that $\deg g_1 < \deg g_0 = n$.
- ▶ Let (u, v) be such that $\mathfrak{t} \equiv u/v \mod p$.
- $g(x) = vg_0(x) + ug_1(x), f(x) = \text{Res}_y (\mu(y), g_0(x) + y g_1(x)).$

until f(x) and g(x) are irr over \mathbb{Z} and $\varphi(x)$ is irr over \mathbb{F}_p .;

Given *n* and *p*, choose $f(x), g(x) \in \mathbb{Z}[x]$, such that

 $f(x) \mod p$ and $g(x) \mod p$, have a common irreducible factor $\varphi(x)$ of degree *n* over \mathbb{F}_n .

Algorithm: Conjugation Method(Conj) [Barbulescu et al.]

Let r > n;

repeat

- ► Choose a quadratic monic $\mu(x)$ irr in $\mathbb{Z}[x]$, having small coefficients(= $O(\ln p)$) and has a root t in \mathbb{F}_p .
- ► Choose $g_0(x)$ and $g_1(x)$ with small coefficients such that $\deg g_1 < \deg g_0 = n$.
- ▶ Let (u, v) be such that $\mathfrak{t} \equiv u/v \mod p$.
- $g(x) = vg_0(x) + ug_1(x), f(x) = \text{Res}_y(\mu(y), g_0(x) + y g_1(x)).$

until
$$f(x)$$
 and $g(x)$ are irr over \mathbb{Z}

until
$$f(x)$$
 and $g(x)$ are irr over \mathbb{Z} $\deg(g) = n$, $\|g\|_{\infty} = O(\sqrt{p})$ $\deg(f) = 2n$, $\|f\|_{\infty} = O(\ln p)$

Given *n* and *p*, choose $f(x), g(x) \in \mathbb{Z}[x]$, such that

 $f(x) \mod p$ and $g(x) \mod p$, have a common irreducible factor $\varphi(x)$ of degree *n* over \mathbb{F}_n .

Algorithm: Conjugation Method(Conj) [Barbulescu et al.]

Let r > n;

repeat

- ► Choose a quadratic monic $\mu(x)$ irr in $\mathbb{Z}[x]$, having small coefficients(= $O(\ln p)$) and has a root t in \mathbb{F}_p .
- ► Choose $g_0(x)$ and $g_1(x)$ with small coefficients such that $\deg g_1 < \deg g_0 = n$.
- ▶ Let (u, v) be such that $t \equiv u/v \mod p$. LLL
- $g(x) = vg_0(x) + ug_1(x), f(x) = \text{Res}_y(\mu(y), g_0(x) + y g_1(x)).$

until
$$f(x)$$
 and $g(x)$ are irr over $\mathbb{Z}[\deg(g) = n, \|g\|_{\infty} = O(\sqrt{p})]$

$$\deg(g) = n, \|g\|_{\infty} = O(\sqrt{p})$$

$$\deg(f) = 2n, \|f\|_{\infty} = O(\ln p)$$

BASIC IDEA

We note the following:

- Both GJL and Conjugation methods use LLL, directly or indirectly.
- ▶ GJL uses all the coefficients of $\varphi(x)$ for doing LLL.
- ► Conjugation uses only one coefficient for LLL.
- ► In there anything in between? The answer is YES and is given by a new polynomial selection algorithm which both subsumes and generalises to GJL and Conjugation method.
- ► The new polynomial selection algorithm is parametrised by a divisor $\frac{d}{n}$ of n and a value $\frac{r}{n} \ge \frac{n}{d}$.

Algorithm: A: A new method of polynomial selection.

Input: p, n, d (a factor of n) and $r \ge n/d$.

Output: f(x), g(x) and $\varphi(x)$.

Let k = n/d;

repeat

Randomly choose a monic irr $A_1(x)$ with small coeff.: deg $A_1 = r + 1$; mod p, $A_1(x)$ has an irr factor $A_2(x)$ of deg k. Choose monic $C_0(x)$ and $C_1(x)$: deg $C_0 = d$ and deg $C_1 < d$. Define

$$\begin{array}{lcl} f(x) & = & \operatorname{Res}_y\left(A_1(y), C_0(x) + y \, C_1(x)\right); \\ \varphi(x) & = & \operatorname{Res}_y\left(A_2(y), C_0(x) + y \, C_1(x)\right) \, \operatorname{mod} \, p; \\ \psi(x) & = & \operatorname{LLL}(M_{A_2,r}); \\ g(x) & = & \operatorname{Res}_y\left(\psi(y), C_0(x) + y \, C_1(x)\right). \end{array}$$

until f(x) and g(x) are irr over \mathbb{Z} and $\varphi(x)$ is irr over \mathbb{F}_p .; return f(x), g(x) and $\varphi(x)$.

Algorithm: A: A new method of polynomial selection.

Input: p, n, d (a factor of n) and $r \ge n/d$.

Output: f(x), g(x) and $\varphi(x)$.

Let k = n/d;

repeat

Table: Parameter estimates of various polynomial selection methods(t = 2)

degf	degg	$ f _{\infty}$	$\ g\ _{\infty}$	$ f _{\infty} g _{\infty}E^{(\deg f + \deg g)}$
n	n	$Q^{\frac{1}{2n}}$	$Q^{\frac{1}{2n}}$	$E^{2n}Q^{\frac{1}{n}}$
r+1	r	$O(\ln p)$	$Q^{\frac{1}{r+1}}$	$E^{2r+1}Q^{\frac{1}{r+1}}$
2 <i>n</i>	n	$O(\ln p)$	$Q^{\frac{1}{2n}}$	$E^{3n}Q^{\frac{1}{2n}}$
d(r+1)	dr	$O(\ln p)$	$Q^{\frac{1}{d(r+1)}}$	$E^{d(2r+1)}Q^{1/(d(r+1))}$
	n $r+1$ $2n$	$ \begin{array}{c cc} n & n \\ r+1 & r \\ 2n & n \end{array} $	$ \begin{array}{c ccc} n & n & Q^{\frac{1}{2n}} \\ r+1 & r & O(\ln p) \\ \hline 2n & n & O(\ln p) \end{array} $	$egin{array}{cccccccccccccccccccccccccccccccccccc$

until f(x) and g(x) are irr over \mathbb{Z} and $\varphi(x)$ is irr over \mathbb{F}_p .;

return f(x), g(x) and $\varphi(x)$.

Let n = 6, and p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835361211

Taking d = 1 and r = n/d, we get

$$f(x) = x^7 + 18 x^6 + 99 x^5 - 107 x^4 - 3470 x^3 - 15630 x^2 - 30664 x - 23239$$

$$g(x) = 712965136783466122384156554261504665235609243446869 x^6 + 16048203858903$$

$$260691766216702652575435281807544247712 x^5 + 14867720774814154920358989$$

$$0852868028274077107624860184 x^4 + 7240853845391439257955648357229262561$$

$$71920852986660372 x^3 + 194693204195493982969795038496468458378024972218$$

$$5345772 x^2 + 2718971797270235171234259793142851416923331519178675874 x$$

$$+1517248296800681060244076172658712224507653769252953211$$

Note that $||g||_{\infty} \approx 2^{180}$.

Let n = 6, and p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835361211

Taking d = 1 and r = n/d, we get

Taking d = 2 and r = n/d, we get

$$f(x) = x^8 - x^7 - 5x^6 - 50x^5 - 181x^4 - 442x^3 - 801x^2 - 633x - 787$$

$$g(x) = 833480932500516492505935839185008193696457787x^6 + 2092593616641287655$$

$$065740032896986343580698615x^5 + 1298540899568952261791537743468335194$$

$$3188533320x^4 + 21869741590966357897620167461539967141532970622x^3 + 6$$

$$4403097224634262677273803471992671747860968564x^2 + 558647116952815842$$

$$83909455665521092749502793807x + 921778354059077827252784356704871327$$

$$10722661831$$

Note that $||g||_{\infty} \approx 2^{156}$.

N

Let n = 6, and p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835361211

Let n = 6, and p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835361211

Let n = 2, and p is a 201-bit prime given below.

p = 1606938044258990275541962092341162602522202993782792835301611

Taking d = 2 and r = n/d = 1, we get

$$f(x) = x^4 - x^3 - 2x^2 - 7x - 3$$

$$g(x) = 717175561486984577278242843019 x^2 + 2189435313197775056442946543188 x$$

$$+2906610874684759633721189386207$$

Note that $\|g\|_{\infty} \approx 2^{101}$. If we take d=2 and r=2, we get the following set of polynomials where $\|g\|_{\infty} \approx 2^{69}$.

$$f(x) = x^6 - 4x^5 - 53x^4 - 147x^3 - 188x^2 - 157x - 92$$

$$g(x) = 15087279002722300985x^4 + 124616743720753879934x^3 + 451785460058994237397x^2 + 749764394939964245000x + 567202989572349792620$$

Recap (\mathbb{F}_Q where $Q = p^n$)

$$\phi(x) \qquad \qquad \phi(x) \qquad \qquad \phi$$

$$\mathcal{F}_1 = \begin{cases} \text{prime ideals } \mathfrak{a}_i \text{ in } \mathcal{O}_1, \text{ either having norm less than } B \\ \text{or lying above the prime factors of } l(f) \end{cases}$$

$$\mathcal{F}_2 = \begin{cases} \text{prime ideals } \mathfrak{b}_j \text{ in } \mathcal{O}_2, \text{ either having norm less than } B \\ \text{or lying above the prime factors of } l(g) \end{cases}$$

- ► The size of the factor basis = $B^{1+o(1)} \approx B$. Cost of Linear Algebra $\approx B^2$.
- Let *E* be such that the coefficients of ϕ are in $\left[-\frac{1}{2}E^{2/t}, \frac{1}{2}E^{2/t}\right]$ i.e. $\|\phi\|_{\infty} \approx E^{2/t}$. Total number of polynomial considered is E^2 , which is, in fact, the cost of relation collection step.

- ► The size of the factor basis = $B^{1+o(1)} \approx B$. Cost of Linear Algebra $\approx B^2$.
- Let *E* be such that the coefficients of ϕ are in $\left[-\frac{1}{2}E^{2/t}, \frac{1}{2}E^{2/t}\right]$ i.e. $\|\phi\|_{\infty} \approx E^{2/t}$. Total number of polynomial considered is E^2 , which is, in fact, the cost of relation collection step.

Let π be the probability of getting a single relation.

Requirements:

- ► Cost(L. A.)=Cost(R. C.)
- ► Sufficient Relations

- ► The size of the factor basis = $B^{1+o(1)} \approx B$. Cost of Linear Algebra $\approx B^2$.
- Let *E* be such that the coefficients of ϕ are in $\left[-\frac{1}{2}E^{2/t}, \frac{1}{2}E^{2/t}\right]$ i.e. $\|\phi\|_{\infty} \approx E^{2/t}$. Total number of polynomial considered is E^2 , which is, in fact, the cost of relation collection step.

Let π be the probability of getting a single relation.

Requirements:

- ► The size of the factor basis = $B^{1+o(1)} \approx B$. Cost of Linear Algebra $\approx B^2$.
- Let E be such that the coefficients of ϕ are in $\left[-\frac{1}{2}E^{2/t}, \frac{1}{2}E^{2/t}\right]$ i.e. $\|\phi\|_{\infty} \approx E^{2/t}$. Total number of polynomial considered is E^2 , which is, in fact, the cost of relation collection step.

Let π be the probability of getting a single relation.

Requirements:

► Cost(L. A.)=Cost(R. C.)

► Sufficient Relations _

Let
$$B = L_O(b, c_b) = E$$
, for some $0 < b < 1$

 π is Computed using Canfield-Erdös-Pomerance theorem.

Canfield-Erdös-Pomerance (CEP) theorem

Let $\pi = \Psi(\Gamma, B)$ be the probability that a random positive integer which is at most Γ is B-smooth. Let $\Gamma = L_Q(z, \zeta)$ and $B = L_Q(b, c_b)$. Then

$$(\Psi(\Gamma, B))^{-1} = L_Q\left(z - b, (z - b)\frac{\zeta}{c_b}\right). \tag{2}$$

 π is Computed using Canfield-Erdös-Pomerance theorem.

Canfield-Erdös-Pomerance (CEP) theorem

Let $\pi = \Psi(\Gamma, B)$ be the probability that a random positive integer which is at most Γ is B-smooth. Let $\Gamma = L_Q(z, \zeta)$ and $B = L_Q(b, c_b)$. Then

$$(\Psi(\Gamma, B))^{-1} = L_Q\left(z - b, (z - b)\frac{\zeta}{c_b}\right). \tag{2}$$

We have Γ equal to,

$$\begin{split} |\mathrm{Res}(f,\phi) \times \mathrm{Res}(g,\phi)| &\approx (\|f\|_{\infty} \|g\|_{\infty})^{t-1} \times E^{2(\mathrm{deg}f + \mathrm{deg}g)/t} \\ &= O\left(E^{2d(2r+1)/t} \times Q^{(t-1)/(d(r+1))}\right). \end{split}$$

We have,

$$p = L_Q(a, c_p) \text{ and } B = L_Q(b, c_b)$$
(3)

Lemma

Let n = kd for positive integers k and d. Using the expressions for p and E(=B) given by (3), we obtain the following.

$$E^{\frac{2}{t}d(2r+1)} = L_{Q}\left(1 - a + b, \frac{2c_{b}(2r+1)}{c_{p}kt}\right); Q^{\frac{t-1}{d(r+1)}} = L_{Q}\left(a, \frac{kc_{p}(t-1)}{(r+1)}\right).$$
(4)

BOUNDARY CASE

Let $p = L_Q(2/3, c_p)$ for some $0 < c_p < 1$. Equation (4) becomes

$$E^{\frac{2}{t}d(2r+1)} = L_{Q}\left(\frac{1}{3} + b, \frac{2c_{b}(2r+1)}{c_{p}kt}\right); Q^{\frac{t-1}{d(r+1)}} = L_{Q}\left(\frac{2}{3}, \frac{kc_{p}(t-1)}{(r+1)}\right).$$
 (5)

BOUNDARY CASE

Let $p = L_Q(2/3, c_p)$ for some $0 < c_p < 1$. Equation (4) becomes

$$E^{\frac{2}{t}d(2r+1)} = L_{Q}\left(\frac{1}{3} + b, \frac{2c_{b}(2r+1)}{c_{p}kt}\right); Q^{\frac{t-1}{d(r+1)}} = L_{Q}\left(\frac{2}{3}, \frac{kc_{p}(t-1)}{(r+1)}\right).$$
(5)

Choosing b = 1/3, we get

$$\Gamma = |\operatorname{Res}(f,\phi) \times \operatorname{Res}(g,\phi)| \approx L_Q\left(\frac{2}{3}, \frac{2c_b(2r+1)}{c_pkt} + \frac{kc_p(t-1)}{(r+1)}\right).$$

Using CEP, we get

$$\pi^{-1} = L_{\mathbb{Q}}\left(\frac{1}{3}, \frac{1}{3}\left(\frac{2(2r+1)}{c_{v}kt} + \frac{kc_{p}(t-1)}{c_{b}(r+1)}\right)\right).$$

BOUNDARY CASE...

Since $B = \pi^{-1}$, we get

$$c_b = \frac{1}{3} \left(\frac{2(2r+1)}{c_p kt} + \frac{kc_p(t-1)}{c_b(r+1)} \right).$$
 (6)

Solving the quadratic for c_b and choosing the positive root gives

$$c_b = \frac{2r+1}{3c_pkt} + \sqrt{\left(\frac{2r+1}{3c_pkt}\right)^2 + \frac{kc_p(t-1)}{3(r+1)}}.$$
 (7)

Overall Complexity is given by $L_O(1/3, 2c_b)$.

NEW COMPLEXITY TRADE-OFFS FOR NFS

NEW COMPLEXITY TRADE-OFFS FOR NFS

Figure: A work-flow of MNFS.

 $f_i(x) \mod p$ should have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

Figure: A work-flow of MNFS.

 $f_i(x) \operatorname{mod} p$ should have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

Figure: A work-flow of MNFS.

 $f_i(x) \operatorname{mod} p$ should have a common irreducible factor $\varphi(x)$ of degree n over \mathbb{F}_p .

Figure: A work-flow of MNFS.

POLYNOMIAL SELECTION IN MNFS

Recall that,

- ✓ Algorithm \mathcal{A} produces f(x) and g(x) of degrees d(r+1) and dr respectively.
- $\int g(x) = \operatorname{Res}_{y}(\psi(y), C_{0}(x) + yC_{1}(x)) \text{ where } \psi(x) = \operatorname{LLL}(M_{A_{2},r}).$
- ► Let $g_1(x) = g(x)$.
- ▶ $g_2(x) = \text{Res}_y(\psi'(y), C_0(x) + yC_1(x))$, where $\psi'(x)$ be the polynomial defined by the second row of the matrix $\text{LLL}(M_{A_2,r})$.
- ▶ $g_i(x) = s_i g_1(x) + t_i g_2(x)$, for i = 3, ..., V. Note that the coefficients s_i and t_i are of the size of \sqrt{V} .

All the g_i 's have degree dr. Asymptotically $\|\psi\|_{\infty} = \|\psi'\|_{\infty} = Q^{1/(d(r+1))}$.

ASYMPTOTIC ANALYSIS OF MNFS

- ▶ Let B and B' be the bounds on the norms of the ideals for factor basis defined by f and each of the g_i 's respectively.
- ► So, the size of the entire factor basis is B + VB'. Let $B \approx VB'$.
- ► Cost of linear algebra is $4B^2 \approx B^2$.
- ► As before, let $\|\phi\|_{\infty} \approx E^{2/t}$, and so the cost of relation collection step is E^2 .
- Let π be the probability of getting a relation.

ASYMPTOTIC ANALYSIS OF MNFS

- ▶ Let B and B' be the bounds on the norms of the ideals for factor basis defined by f and each of the g_i 's respectively.
- ▶ So, the size of the entire factor basis is B + VB'. Let $B \approx VB'$.
- ► Cost of linear algebra is $\frac{4B^2}{}$ $\approx B^2$.
- As before, let $\|\phi\|_{\infty} \approx E^{2/t}$, and so the cost of relation collection step is E^2 .
- Let π be the probability of getting a relation.

Requirements:

► Sufficient Relations _

ASYMPTOTIC ANALYSIS OF MNFS..

Similar to NFS case, let π be the probability of getting a relation.

$$\pi = \Psi(\Gamma_1, B) V \Psi(\Gamma_2, B') \text{ where } \Gamma_1 = \operatorname{Res}_x(f(x), \phi(x))$$

$$\Gamma_2 = \operatorname{Res}_x(g_i(x), \phi(x))$$

We have all the necessary tools available to compute π i.e.,

$$\|\phi\|_{\infty} \approx E^{2/t}$$
, $\|f\|_{\infty} \approx O(\ln p)$ and $\|g\|_{\infty} \approx Q^{1/d(r+1)}$

ASYMPTOTIC ANALYSIS OF MNFS..

Let,

$$B = L_Q\left(1/3, c_b\right)$$
 and $V = L_Q\left(1/3, c_v\right)$, so $B' = L_Q\left(1/3, c_b - c_v\right)$.

Assume $p = L_Q(\frac{2}{3}, c_p)$, proceeding similar to the NFS case, we get

$$c_b = \frac{4r+2}{6ktc_p} + \sqrt{\frac{r(3r+2)}{(3ktc_p)^2} + \frac{c_pk(t-1)}{3(r+1)}}.$$
 (10)

Hence the overall complexity of MNFS for the boundary case is $L_Q(\frac{1}{3}, 2c_b)$.

For t = 2 and k = 1:

$$\mathbf{C}_{\mathrm{MNFS}}(c_p,r) = 2c_b = 2\sqrt{\frac{c_p}{3(r+1)} + \frac{(3r+2)r}{36\,c_p^2}} + \frac{2r+1}{3\,c_p}.$$

NEW COMPLEXITY TRADE-OFFS FOR MNFS

¹This equation is incorrect in the proceedings version. ☐ > ← ≥ > ← ≥ > → ○ ○ ○

NEW COMPLEXITY TRADE-OFFS FOR MNFS

¹This equation is incorrect in the proceedings version (♂) · (≥) · (≥) · (≥) · (≥)

NEW COMPLEXITY TRADE-OFFS

Questions?

