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The context of our work - PQC

@ Shor's quantum algorithm

@ Post-quantum cryptography
Develop public key cryptosystems that could resist resist
future quantum computer attacks
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The Preparation for the Future

@ The first Quantum-Safe-Crypto Workshop
26 - 27 September, 2013

ETSI — the European Telecommunications Standards
Institute at SOPHIA ANTIPOLIS, FRANCE

@ The second Quantum-Safe-Crypto Workshop

6 - 2 October , 2014, Ottawa, Canada
White paper

@ The Quantum-Safe-Crypto Workshop at NIST: National
Institute of Standard of Technology,

April 7-8, 2015, Washington DC

Jintai Ding AKE from rLWE



Motivation
Diffie-Hellman
HMQV

What do we really need 7— a slides of L. Chen from NIST

Practical Challenge

» Quantum computing will break many public-key
cryptographic algorithms/schemes
> Key agreement (e.g. DH and MQV)
- Digital signatures (e.g. RSA and DSA)
> Encryption (e.g. RSA)

» These algorithms have been used to protect Internet
protocols (e.g. IPsec) and applications (e.g.TLS)

» NIST is studying “quantum-safe” replacements

» This talk will focus on practical aspects
> For security, see Yi-Kai Liu’s talk later today
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Post Quantum Needs — Functionality

o Key Exchange
@ Signatures
@ Authentication
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Key Exchange Applications — SSL/TLS

o RSA
o Diffie—Hellman

@ Our goal — replacements for post quantum world
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Diffie-Hellman Key Exchange

(g°)° (g%)°

Jintai Ding AKE from rLWE



Motivation
Diffie-Hellman
HMQV

Generalizing DH

b commute

@ DH works because maps f(x) = x? and h(x) = x
@ When do we have commuting maps?

o Powers of x (normal DH)
o lIterates of a polynomial
e J. Ritt (1923) — Power polynomials, Chebychev polynomials.
Elleptic curve
e (Ring) LWE approximately commutes—use to build DH
generalization
(s1 X a) X sp=s1 X (axs)
(as1 + e1)s2 + &2 = s1asp ~ (as, + e2)s1 + €.

Jintai Ding AKE from rLWE



Motivation
Diffie-Hellman
HMQV

Learning with Errors [2006, Regev]

b1 ail a2 ... ain s1 e1
bo a ax» ... axn S e
= +
bm aml adm2 ... dmn Sn €m
——  ——
5 A g &

@ Approximate system over Zq
@ Hard to find s’ from A, b.
e Hard to tell if s’ even exists

@ Reduction to lattice approximation problems
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Ring LWE

Definition
Let n be a power of 2, ¢ =1 (mod 2n) prime. Define the ring

_ Zq[x]
T (x"+ 1)

Again, b = as + e hard to find s

Hard to distinguish from uniform b
Approximation problems on ideal lattices
More efficient than standard LWE
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Authentication: HMQV — To Resist Man-in-the-middle
Attack and Achieve Forward Security

o Static keys a, b; tied to each party’s identity.
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Authentication: HMQV — To Resist Man-in-the-middle
Attack and Achieve Forward Security

o Static keys a, b; tied to each party’s identity.
@ Ephemeral keys x, y: forward security.
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Authentication: HMQV — To Resist Man-in-the-middle
Attack and Achieve Forward Security

! |

(g”(gP)e)+e (g%(g%) )y te
—_———— —_————
OA oB

o Static keys a, b; tied to each party’s identity.
@ Ephemeral keys x, y: forward security.
o Publicly derivable computations d, e.
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Authentication: HMQV — To Resist Man-in-the-middle
Attack and Achieve Forward Security

! |

(gy(gb)e)erda — g(y+eb)(x+da) _ (gX(ga)d)y+eb

OA oB

o Static keys a, b; tied to each party’s identity.
@ Ephemeral keys x, y: forward security.

o Publicly derivable computations d, e.

@ Shared key is K = H(ca) = H(og)
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Lattice-based Key Exchange Lattice Diffie-Hellman
Lattice HMQV

Diffie-Hellman from Ideal Lattices

pa = asa + 2ea

pB = asg + 2ep

@ Public a € Ry. Acts like generator g in DH.
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Lattice-based Key Exchange Lattice Diffie-Hellman

Lattice HMQV

Diffie-Hellman from Ideal Lattices

pa = asa + 2ea

pB = asg + 2ep

I I

ka = sapg = aSaSg +2Speg  ~ kg = pasg = aSaSp + 2Sgep,

Public a € Rq. Acts like generator g in DH.

Each side's key is only approximately equal to the other.
Difference is even—same low bits.

No authentication—MitM
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Lattice-based Key Exchange Lattice Diffie-Hellman
Lattice HMQV

HMQV from ldeal Lattices

PA = asa + 2ep

ps = asg + 2ep

@ pa, ps as above. Public, static keys for authentication
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Lattice-based Key Exchange Lattice Diffie-Hellman
Lattice HMQV

HMQV from ldeal Lattices

PA = asa + 2ep, xa = ara + 214

pg = asg +2ep,yg = arg + 2fg

@ pa, ps as above. Public, static keys for authentication

@ xu, ys same form. Forward secrecy.
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Lattice-based Key Exchange Lattice Diffie-Hellman

Lattice HMQV

HMQV from ldeal Lattices

PA = asa + 2ep, xa = ara + 214

pg = asg +2ep,yg = arg + 2fg

! !
kA = (de + yB)(SAC + rA) kB = (pAC + XA)(SBd + rB)
+2dga +2cgp
~ (aSgd + arg)(sac + ra) ~ (aSac + ara)(sgd + rg)

@ pa, ps as above. Public, static keys for authentication
@ xu, ys same form. Forward secrecy.

@ ¢, d publicly derivable; ga, gg random, small.
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Key Derivation

Obtaining shared secret from approximate shared secret:

= kO KD k)
( k) k(l) ke
g ( )""7g(n_1))
ka — kp = 28

ka = kg (mod 2)
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Key Derivation

Obtaining shared secret from approximate shared secret:

= kO KD k)
( k) k(l) ke
g ( )""7g(n_1))
ka — kp = 28

ka = kg (mod 2)

e Each kg) = kg) +2gW).

o Each gU) is small (|gV)| < 2).

@ Matching coefficients differ by small multiple of 2
o Take each coefficient mod 2, get n bit secret
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Lattice HMQV

Wrap-around lllustrated

| |
I I

|
1
-2-10 1 2 3 4

@ Difference 2, both even.
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Wrap-around lllustrated

@ Difference 2, both even.
o But wait! If ¢ =5, Zqg = {—-2,-1,0,1,2}.

@ 4 becomes —1, now parities disagree!
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Compensating for Wrap-Around

Recall: [g)] < g

Define E = {—|7],..., 7]} Middle half of Z,.

G) — )
= kg’

(]

If kg) € E, no wrap-around occurs; k
If kY ¢ E, then kY + 2 c E
if k9 ¢ E, k) + 5 = k) 4 92,
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Wrap-around Defeated

Define wY) = {1 O g r " Then kY + w132 c E.

Also, k(J) + W(J)q = k( J) (J)q;l (mod 2).
° k,(a) (J)q ! mod g mod2—kU)+W,(3) = modqmod 2.
( (0) (1) (n— 1))

° Wrap—around correction wg = (wg ', wg’,..., wg
OUB—kB+WB ! mod 2.

OUA—kA+WB - mod2
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HMQV from ldeal Lattices—Corrected

PA, XA
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HMQV from ldeal Lattices—Corrected

PA, XA
PB;YB, WB
ka ——— OA=0B «—— ks
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HMQV from ldeal Lattices—Corrected

PA, XA
PB;YB, WB
kA — 0A —=0B +— kB
|
Key
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The Provable Security

Proof Games

Proof proceeds by series of games:
@ Begin with simulated protocol

@ Replace one hash output with true random value,
back-program random oracle

Adversary cannot distinguish from previous game

Eventually, if original protocol can be distinguished from
random, rLWE can be broken

The modification using rejecting sampling
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The Provable Security

Forward Security

@ If static keys compromised, previous session keys remain secure

@ Notion captured in proof by giving adversaries ability to
corrupt static key

@ Use Bellare-Rogaway model restricted to two-pass
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The Provable Security

Quantum Hardness

@ Proof uses Random Oracle Model—quantum implications not
fully understood

@ Important step to post quantum key exchange
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Implementations Parameters

Parameters n Security (expt.) @ o log g log g (bits)
I* 1024 80 bits 3.397 | 101.919 | 8.5 40
Il 2048 80 bits 3.397 | 161.371 27 78
" 2048 128 bits 3.397 | 161.371 19 63
A% 4096 128 bits 3.397 | 256.495 50 125
\% 4096 192 bits 3.397 | 256.495 36 97
\ 4096 256 bits 3.397 | 256.495 28 81

Jintai Ding AKE from rLWE



Implementations

Communication Overheads

Choice of Size (KB)
Parameters pk sk (expt.) | init. msg | resp. msg
I 5 KB 0.75 KB 5 KB 5.125 KB

I 19.5 KB 1.5 KB 19.5 KB | 19.75 KB
" 15.75 KB 1.5 KB 15.75 KB 16 KB

v 62.5 KB 3 KB 62.5 KB 63 KB
\% 48.5 KB 3 KB 48.5 KB 49 KB
\ 40.5 KB 3 KB 40.5 KB 41 KB
The bound 6« with erfe(6) & 2755 is used to estimate the size of secret
keys.
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Implementations

Timings

Parameters Initiation Response Finish
I 3.22 ms (0.02 ms) 8.50 ms (4.69 ms) 5.23 ms (4.73 ms)
[l 12.00 ms (0.04 ms) | 29.33 ms (14.64 ms) | 17.28 ms (14.61 ms)
[l 10.33 ms (0.04 ms) | 25.83 ms (13.46 ms) | 15.58 ms (13.40 ms)
v 83.61 ms (0.08 ms) | 156.58 ms (39.86 ms) | 73.11 ms (39.73 ms)
( ) ( )
( ) ( )

Vv 61.74 ms (0.08 ms) | 117.81 ms (32.58 ms) | 55.64 ms (32.20 ms
\ 25.42 ms (0.08 ms 62.31 ms (31.32 ms) | 36.80 ms (31.29 ms

Table: Timings of Proof-of-Concept Implementations in ms (The figures in the
parentheses indicate the timings with pre-computing. For comparison, by simply
using the “speed” command in openssl on the same machine, the timing for
dsal024 signing algorithm is about 0.7 ms, and for dsa2048 is about 2.3 ms).
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Implementations

Summary

@ We build a simple AKE based on RLWE.
@ They are provably secure.
@ We can prove the Forward Security of the AKE.

@ Our preliminary implementations are very efficient.
Our AKE are strong candidates for the post-quantum world.
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Thank You
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