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The context of our work - PQC

Shor’s quantum algorithm

Post-quantum cryptography
Develop public key cryptosystems that could resist resist
future quantum computer attacks
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The Preparation for the Future

The first Quantum-Safe-Crypto Workshop

26 - 27 September, 2013

ETSI – the European Telecommunications Standards
Institute at SOPHIA ANTIPOLIS, FRANCE

The second Quantum-Safe-Crypto Workshop

6 - 2 October , 2014, Ottawa, Canada
White paper

The Quantum-Safe-Crypto Workshop at NIST: National
Institute of Standard of Technology,

April 7-8, 2015, Washington DC
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What do we really need ?– a slides of L. Chen from NIST
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Post Quantum Needs – Functionality

Key Exchange

Signatures

Authentication
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Key Exchange Applications — SSL/TLS

RSA

Diffie–Hellman

Our goal – replacements for post quantum world
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Diffie-Hellman Key Exchange

ga

gb

(gb)a (ga)b
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Generalizing DH

DH works because maps f (x) = xa and h(x) = xb commute

When do we have commuting maps?

Powers of x (normal DH)
Iterates of a polynomial
J. Ritt (1923) – Power polynomials, Chebychev polynomials.
Elleptic curve

(Ring) LWE approximately commutes—use to build DH
generalization
(s1 × a)× s2 = s1 × (a× s2)
(as1 + e1)s2 + e2 ≈ s1as2 ≈ (as2 + e2)s1 + e1.
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Learning with Errors [2006, Regev]
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Approximate system over Zq

Hard to find ~s from A, ~b.

Hard to tell if ~s even exists

Reduction to lattice approximation problems
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Ring LWE

Definition

Let n be a power of 2, q ≡ 1 (mod 2n) prime. Define the ring

Rq =
Zq[x ]

(xn + 1)
.

Again, b = as + e hard to find s

Hard to distinguish from uniform b

Approximation problems on ideal lattices

More efficient than standard LWE
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Authentication: HMQV – To Resist Man-in-the-middle
Attack and Achieve Forward Security

ga

, g x

gb

, g y

(g y (gb)e)x+da︸ ︷︷ ︸
σA

(g x(ga)d)y+eb︸ ︷︷ ︸
σB

= g (y+eb)(x+da) =

Static keys a, b; tied to each party’s identity.

Ephemeral keys x , y : forward security.

Publicly derivable computations d , e.

Shared key is K = H(σA) = H(σB)
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Diffie-Hellman from Ideal Lattices

pA = asA + 2eA

pB = asB + 2eB

kA = sApB = aSASB + 2SAeB kB = pAsB = aSASB + 2SBeA≈

Public a ∈ Rq. Acts like generator g in DH.

Each side’s key is only approximately equal to the other.

Difference is even—same low bits.

No authentication—MitM
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HMQV from Ideal Lattices

pA = asA + 2eA

, xA = arA + 2fA

pB = asB + 2eB

, yB = arB + 2fB

kA = (pBd + yB)(sAc + rA)
+2dgA

≈ (aSBd + arB)(sAc + rA)

kB = (pAc + xA)(sBd + rB)
+2cgB

≈ (aSAc + arA)(sBd + rB)

pA, pB as above. Public, static keys for authentication

xA, yB same form. Forward secrecy.

c , d publicly derivable; gA, gB random, small.
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Key Derivation

Obtaining shared secret from approximate shared secret:

kA = (k
(0)
A , k

(1)
A , . . . , k

(n−1)
A )

kB = (k
(0)
B , k

(1)
B , . . . , k

(n−1)
B )

g̃ = (g (0), g (1), . . . , g (n−1))

kA − kB = 2g̃

kA ≡ kB (mod 2)

Each k
(j)
A = k

(j)
B + 2g (j).

Each g (j) is small (|g (j)| < q
8 ).

Matching coefficients differ by small multiple of 2

Take each coefficient mod 2, get n bit secret

Jintai Ding AKE from rLWE
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Wrap-around Illustrated

−2 −1 0 1 2 3 4 5

2g̃ = 2

2g̃ = 3

Difference 2, both even.

But wait! If q = 5, Zq = {−2,−1, 0, 1, 2}.
4 becomes −1, now parities disagree!
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Compensating for Wrap-Around

Recall: |g (j)| < q
8

Define E = {−bq4c, . . . , b
q
4e}. Middle half of Zq.

If k
(j)
B ∈ E , no wrap-around occurs; k

(j)
A ≡ k

(j)
B .

If k
(j)
B /∈ E , then k

(j)
B + q−1

2 ∈ E

If k
(j)
B /∈ E , k

(j)
A + q−1

2 ≡ k
(j)
B + q−1

2 .
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Wrap-around Defeated

Define w
(j)
B =

{
0 k

(j)
B ∈ E ,

1 k
(j)
B /∈ E .

Then k
(j)
B + w

(j)
B

q−1
2 ∈ E .

Also, k
(j)
B + w

(j)
B

q−1
2 ≡ k

(j)
A + w

(j)
B

q−1
2 (mod 2).

k
(j)
B + w

(j)
B

q−1
2 mod q mod 2 = k

(j)
A + w

(j)
B

q−1
2 mod q mod 2.

Wrap-around correction wB = (w
(0)
B ,w

(1)
B , . . . ,w

(n−1)
B )

σB = kB + wB
q−1

2 mod 2.

σA = kA + wB
q−1

2 mod 2.
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HMQV from Ideal Lattices—Corrected

pA, xA

pB , yB ,wB

kA kBσA = σB

H

Key
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Proof Games

Proof proceeds by series of games:

Begin with simulated protocol

Replace one hash output with true random value,
back-program random oracle

Adversary cannot distinguish from previous game

Eventually, if original protocol can be distinguished from
random, rLWE can be broken

The modification using rejecting sampling

Jintai Ding AKE from rLWE
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Forward Security

If static keys compromised, previous session keys remain secure

Notion captured in proof by giving adversaries ability to
corrupt static key

Use Bellare–Rogaway model restricted to two-pass
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Quantum Hardness

Proof uses Random Oracle Model—quantum implications not
fully understood

Important step to post quantum key exchange
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Implementations Parameters

Parameters n Security (expt.) α γ log β
α log q (bits)

I∗ 1024 80 bits 3.397 101.919 8.5 40
II 2048 80 bits 3.397 161.371 27 78
III 2048 128 bits 3.397 161.371 19 63
IV 4096 128 bits 3.397 256.495 50 125
V 4096 192 bits 3.397 256.495 36 97
VI 4096 256 bits 3.397 256.495 28 81
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Communication Overheads

Choice of Size (KB)
Parameters pk sk (expt.) init. msg resp. msg

I∗ 5 KB 0.75 KB 5 KB 5.125 KB
II 19.5 KB 1.5 KB 19.5 KB 19.75 KB
III 15.75 KB 1.5 KB 15.75 KB 16 KB
IV 62.5 KB 3 KB 62.5 KB 63 KB
V 48.5 KB 3 KB 48.5 KB 49 KB
VI 40.5 KB 3 KB 40.5 KB 41 KB

The bound 6α with erfc(6) ≈ 2−55 is used to estimate the size of secret
keys.
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Motivation
Lattice-based Key Exchange

The Provable Security
Implementations

Timings

Parameters Initiation Response Finish

I 3.22 ms (0.02 ms) 8.50 ms (4.69 ms) 5.23 ms (4.73 ms)

II 12.00 ms (0.04 ms) 29.33 ms (14.64 ms) 17.28 ms (14.61 ms)

III 10.33 ms (0.04 ms) 25.83 ms (13.46 ms) 15.58 ms (13.40 ms)

IV 83.61 ms (0.08 ms) 156.58 ms (39.86 ms) 73.11 ms (39.73 ms)

V 61.74 ms (0.08 ms) 117.81 ms (32.58 ms) 55.64 ms (32.20 ms)

VI 25.42 ms (0.08 ms) 62.31 ms (31.32 ms) 36.80 ms (31.29 ms)

Table: Timings of Proof-of-Concept Implementations in ms (The figures in the
parentheses indicate the timings with pre-computing. For comparison, by simply
using the “speed” command in openssl on the same machine, the timing for
dsa1024 signing algorithm is about 0.7 ms, and for dsa2048 is about 2.3 ms).
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Summary

We build a simple AKE based on RLWE.

They are provably secure.

We can prove the Forward Security of the AKE.

Our preliminary implementations are very efficient.
Our AKE are strong candidates for the post-quantum world.
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