FHE Bootstrapping in less than a Second

1

Léo Ducas Daniele Micciancio

University of California, San Diego

Eurocrypt, April 2015

'Now at CWI, Amsterdam, The Netherlands

23

Outline

Introduction/Summary

2/23

The evolution of FHE

Fully Homomorphic Encryption has seen drastic changes since
Gentry's first proposal:

» [Rivest,Adleman,Dertouzos'78]: Open problem

> [Gentry'09]: ideal lattices, sparse subset-sum, squashing, etc.

v

[Gentry,Halevi'11],[Brakerski,Vaikuntanathan'11]: no squash
[Brakerski,Vaikuntanathan'11]: Subexponential LWE
[Brakerski'12],[Alperin-Sheriff,Peiert'14]: (Polynomial) LWE

» Many more works improving efficiency, etc.

v

v

23

The evolution of FHE

Fully Homomorphic Encryption has seen drastic changes since
Gentry's first proposal:

v

[Rivest,Adleman,Dertouzos'78]: Open problem

v

[Gentry'09]: ideal lattices, sparse subset-sum, squashing, etc.
[Gentry,Halevi'11],[Brakerski,Vaikuntanathan'11]: no squash
[Brakerski,Vaikuntanathan'11]: Subexponential LWE

[Brakerski'12],[Alperin-Sheriff,Peiert'14]: (Polynomial) LWE

» Many more works improving efficiency, etc.

v

v

v

Still, all schemes have a common ingredient:
Key technique
Gentry's FHE bootstrapping

23

The Problem

FHE Bootstrapping/Refreshing is an expensive process:
» [Halevi, Shoup'14,'15] HElib: 6-30 mins

23

The Problem

FHE Bootstrapping/Refreshing is an expensive process:
» [Halevi, Shoup'14,'15] HElib: 6-30 mins

Mitigating the cost of bootstrapping (previous approaches):
» SIMD-FHE: Perform many refresh operations in parallel
» Noise control: allow more computation before refreshing

» HElib: Cost can be amortized over ~ 1000 binary ciphertext.

The Problem

FHE Bootstrapping/Refreshing is an expensive process:
» [Halevi, Shoup'14,'15] HElib: 6-30 mins

Mitigating the cost of bootstrapping (previous approaches):
» SIMD-FHE: Perform many refresh operations in parallel
» Noise control: allow more computation before refreshing

» HElib: Cost can be amortized over ~ 1000 binary ciphertext.

Question

How fast can we refresh a single ciphertext?

Contributions

Question

How fast can we refresh for a single ciphertext ?

%j.e. not ridiculously slower

23

Contributions

Question

How fast can we refresh for a single ciphertext ?

We give a proof of concept solution in 0.6 seconds:
amortized cost comparable? to [HEIlib], but without the delay...
Two new techniques:

» a new, cheap NAND gate

> a simpler refreshing procedure using ring structure

%j.e. not ridiculously slower

5/23

The new NAND gate

Base: Start from LWE encryption with message space: Z;, t > 2.

Idea: Different message space for input (¢t = 4) and output (t = 2).

6/23

The new NAND gate

Base: Start from LWE encryption with message space: Z;, t > 2.

Idea: Different message space for input (¢t = 4) and output (t = 2).

Advantages:
» Cost of computing Homomorphic NAND is negligible (similar
to a single private key cryptographic operation.)
> Excellent noise growth: e grows only by a small constant
factor.
» Substantially simplifies the task faced by the Refreshing
procedure.

6

23

A simpler refreshing procedure

Base: General approach of [Alperin-Sheriff,Peikert'14] + Ring
variant of [Gentry,Sahai,Waters'13] Homomorphic encryption.

Idea: Implement arithmetic modgq in the exponent

23

A simpler refreshing procedure

Base: General approach of [Alperin-Sheriff,Peikert'14] + Ring
variant of [Gentry,Sahai,Waters'13] Homomorphic encryption.

Idea: Implement arithmetic modgq in the exponent

Improvement over [AP14]:
» Theoretical speed-up of ﬁ(log3 q)
» Smaller final error.

Combined with the problem simpification brought by our cheap
NAND computation, this results in bootstrapping cost ~ 0.6
second, at estimated ~100-bit security level.

Outline

The new NAND gate

8/23

LWE encryption

Idea: use an LWE sample as a mask

Encs(m) = (a, b
Decs(a, b) = [2(b

.9
m-3+e

(a,s)+e+m-

q/2)
—(a, s))/q]

binary messages

LWEZ(m, q/4)

9/23

LWE encryption

Idea: use an LWE sample as a mask

Encs(m) = (a, b

,b=1(a,s)+e+m-q/2)
Decs(a, b) = |2(b — (a, s))/q]

.9
m-3+e

.9
m-z+e

binary messages

Messages in Z4
LWEZ(m, q/4)

LWEZ(m. q/8)

9/23

LWE encryption

Idea: use an LWE sample as a mask

.9
m-3+e

.9
m-z+e

binary messages

Messages in Z4
LWEZ(m, q/4)

LWEZ(m. q/8)

Smaller error

LWEZ(m, q/16)

A Cheaper NAND gate

Idea, use: my A my < my + my = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

10/23

A Cheaper NAND gate

Idea, use: my A my < my + my = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

10/23

A Cheaper NAND gate

Idea, use: my A my < my + my = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

Consider it as a ciphertext for t = 2 and rotate.

10/23

A Cheaper NAND gate

Idea, use: my A my < my + my = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

Consider it as a ciphertext for t = 2 and rotate.

10/23

A Cheaper NAND gate

Idea, use: my A my < my + my = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

Consider it as a ciphertext for t = 2 and rotate.

10/23

A Cheaper NAND gate

Idea, use: my A my < my + my = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

5q
8 4

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:
LWEZ(m1, &) x LWEd(m2, &) — LWE2Z(my A mp, £)

(a,b1) . (a2.b2) = (artag b+ b+)

10/23

Lightweight Refreshing

We have HomNAND:

LWE? <m1, 1%) x LWE? (mg, 1%) — LWE? (ml A mp, %)
To build an FHE we require a relaxed function LightRefresh:
LightRefresh : LWEZ (m, q/4) — LWEZ (m, q/16)
whereas previous works required:

Refresh : LWEZ (m, q/4) — LWE2(m,E) ,E < q.

As usual, we will use Key Switching, Mod Switching, and
Homomorphic Decryption.

11/23

Outline

Simpler Refreshing

12/23

Decryption using an Accumulator

Decs(a, b) = msb (b — (a, s) mod q)
Decs(a, b):

acc <+ b
for i =1 to n:
acc < acc — a; - sy mod g

Return msb(acc)

13/23

Decryption using an Accumulator

Decs(a, b) = msb (b — (a, s) mod q)
Homomorphic decryption given E(s):

E(acc) < b
for i =1 to n:

E(acc) < E(acc) — E(a; - s;) mod g
Return LWE(msb(acc))

We need to perform this algorthm given Encryption of the key s.

13/23

Decryption using an Accumulator

Decs(a, b) = msb (b — (a, s) mod q)
Homomorphic decryption given E(s):

E(acc) < b
for i =1 to n:

E(acc) < E(acc) — E(a; - s;) mod g
Return LWE(msb(acc))

We need to perform this algorthm given Encryption of the key s.

> Initialization
» Addition modg with a fresh ciphertext E(a - s;)
» A final test for the msb, in LWE form

13/23

Implementing the Accumulator

The framework follows from [AP14]:
» Use (x)-homomorphism to implement (Zq, +)

» Use (4)-homomorphism to implement msb testing.

[AP14] builds (Zq,+) as an outer structure:
convolution products and CRT.

We optimize this construction in the case of cyclotomic ring

R =7Z[X]/(XN +1).

We embed Z in the group ((X), x), the group of roots of unity.

14 /23

Ring version of [GSW13]

Q = 2%, Gadget matrix: G = [l,21,4l...2k 1]t ¢ gtk
Q

Es(m) =[A,As+¢e]+m-G

Decs: extract an LWE;g ciphertext (last row) and decrypt.
Supports Add. and Mult. for small messages m € {—1,0,1}.

15/23

Ring version of [GSW13]

Q = 2%, Gadget matrix: G = [I,21,4l... 2k 1]t ¢ Z'glx(nﬂ)k.

Es(m) =[A,As+¢e]+m-G

Decs: extract an LWE;g ciphertext (last row) and decrypt.
Supports Add. and Mult. for small messages m € {—1,0,1}.

Cyclotomic ring R = Z[X]/(XN + 1), 2N = q is a power of 2.
Generalized Gadget matrix: G = u - [I, b, b?1... ¥]t € R,

Es(meZg)=[a,a-s+e]+ X" -G

Supports addition for all message m € Z.

15/23

The group of roots of unity and msb

m
Xm

Xm

Sum all the coordinates

(1, xm) ‘

1 -1 1
X xN-11 1
Take the vector representation of X

0 0 -1

1 0 0

0 1 0

1 1 -1

(1, xmy+1 (=1)msb(m) 1

0
1

1
0

0

1

16

23

Improvements

Improvement over the bootstrapping of [AP14]:
» Generic {)(n) speed-up from Ring structure
» An extra Q(log® q) speed-up by embedding
» Error after bootstrapping reduced by O(y/nlog n).

In addition to our new NAND gate, implementation becomes
reasonable.

17/23

Outline

Conclusion

18/23

The ciphertext cycle

Modulus Switch

ACC operations
and msbTest

LWE‘,;I/Q (m

,Ué(Ns/z))

Key SWitch

LWES ¢ (m,ab(e /2))

19/23

Parameter Proposal

Parameters.
LWE parameters: n =500 g = 512.
Ring-GSW parameters: N = 1024 Q=12%.
Gadget Matrix: Q/8-[1,211 1,222]

Key Size.

Bootstrapping Key Size 1032 MB

<
Key Switching Key Size: +314 MB } S 1.36B

Running time.
Per NAND gate: 48,000 FFTs ~0.48 sec

Security.
Root-Hermite factor the LWE scheme 61 = 1.0064
Root-Hermite factor Ring-GSW scheme 4, = 1.0064

20/23

Proof of Concept Implementation

» Coded in 4 days-man
room for implementation level optimization.

» Reasonably concise: < 600 lines of C++ code
[HEIlib]: ~ 20,000 lines

» Using FFT3 over C at double precision
in dimension 2048 to obtain negacyclic-FFT.
potentially slower than 32-bits NTT in dimension 1024.

Result: Homomorphic NAND & refreshing in 0.61 seconds
on a single standard 64-bit core at 3Ghz.

Not much slower than the amortized cost of bootstrapping in
[HEIlib], no delays, hackable.

SFFTW library: The Fastest Fourier Transform in the West

21/23

Beyond binary gates
Replace msb by other membership testing function. Obtain :

» moderate fan-in symmetric gates
majority, threshold gates, neurons

» multiple outputs gates

Figure : Full-adder in one refresh (3-inputs, 2-outputs)

my + mp + ms3 € {1,3,5} miy + my+ m3 € {2,3,4}
m® my ® m3 carry(my, mp, m3)

22/23

Git it
Open Source: https://github.com/lducas/FHEW

> click it, clone it, pull it, branch it,
> hack it, use it, break it, fix it,

> view it, code it, jam - debug it,

> write it, cut it, paste it, save it,

> load it, check it, quick - rewrite it,
> commit, push it and pull-request it

>

>

Homomorphic ... Homomorphic

Updated full paper: https://eprint.iacr.org/2014/816

Acknowledgements

The authors are thankful to Igors Stepanovs and Max Fillinger for
helpful conversations and comments on this work.

23

https://github.com/lducas/FHEW
https://eprint.iacr.org/2014/816

	Introduction/Summary
	The new NAND gate
	Simpler Refreshing
	Conclusion

