
FHE Bootstrapping in less than a Second

Léo Ducas1 Daniele Micciancio

University of California, San Diego

Eurocrypt, April 2015

1Now at CWI, Amsterdam, The Netherlands
1 / 23

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

2 / 23

The evolution of FHE

Fully Homomorphic Encryption has seen drastic changes since
Gentry’s first proposal:

I [Rivest,Adleman,Dertouzos’78]: Open problem

I [Gentry’09]: ideal lattices, sparse subset-sum, squashing, etc.

I [Gentry,Halevi’11],[Brakerski,Vaikuntanathan’11]: no squash

I [Brakerski,Vaikuntanathan’11]: Subexponential LWE

I [Brakerski’12],[Alperin-Sheriff,Peiert’14]: (Polynomial) LWE

I Many more works improving efficiency, etc.

Still, all schemes have a common ingredient:

Key technique

Gentry’s FHE bootstrapping

3 / 23

The evolution of FHE

Fully Homomorphic Encryption has seen drastic changes since
Gentry’s first proposal:

I [Rivest,Adleman,Dertouzos’78]: Open problem

I [Gentry’09]: ideal lattices, sparse subset-sum, squashing, etc.

I [Gentry,Halevi’11],[Brakerski,Vaikuntanathan’11]: no squash

I [Brakerski,Vaikuntanathan’11]: Subexponential LWE

I [Brakerski’12],[Alperin-Sheriff,Peiert’14]: (Polynomial) LWE

I Many more works improving efficiency, etc.

Still, all schemes have a common ingredient:

Key technique

Gentry’s FHE bootstrapping

3 / 23

The Problem

FHE Bootstrapping/Refreshing is an expensive process:

I [Halevi, Shoup’14,’15] HElib: 6-30 mins

Mitigating the cost of bootstrapping (previous approaches):

I SIMD-FHE: Perform many refresh operations in parallel

I Noise control: allow more computation before refreshing

I HElib: Cost can be amortized over ≈ 1000 binary ciphertext.

Question

How fast can we refresh a single ciphertext?

4 / 23

The Problem

FHE Bootstrapping/Refreshing is an expensive process:

I [Halevi, Shoup’14,’15] HElib: 6-30 mins

Mitigating the cost of bootstrapping (previous approaches):

I SIMD-FHE: Perform many refresh operations in parallel

I Noise control: allow more computation before refreshing

I HElib: Cost can be amortized over ≈ 1000 binary ciphertext.

Question

How fast can we refresh a single ciphertext?

4 / 23

The Problem

FHE Bootstrapping/Refreshing is an expensive process:

I [Halevi, Shoup’14,’15] HElib: 6-30 mins

Mitigating the cost of bootstrapping (previous approaches):

I SIMD-FHE: Perform many refresh operations in parallel

I Noise control: allow more computation before refreshing

I HElib: Cost can be amortized over ≈ 1000 binary ciphertext.

Question

How fast can we refresh a single ciphertext?

4 / 23

Contributions

Question

How fast can we refresh for a single ciphertext ?

We give a proof of concept solution in 0.6 seconds:
amortized cost comparable2 to [HElib], but without the delay...
Two new techniques:

I a new, cheap NAND gate

I a simpler refreshing procedure using ring structure

2i.e. not ridiculously slower
5 / 23

Contributions

Question

How fast can we refresh for a single ciphertext ?

We give a proof of concept solution in 0.6 seconds:
amortized cost comparable2 to [HElib], but without the delay...
Two new techniques:

I a new, cheap NAND gate

I a simpler refreshing procedure using ring structure

2i.e. not ridiculously slower
5 / 23

The new NAND gate

Base: Start from LWE encryption with message space: Zt , t > 2.

Idea: Different message space for input (t = 4) and output (t = 2).

Advantages:

I Cost of computing Homomorphic NAND is negligible (similar
to a single private key cryptographic operation.)

I Excellent noise growth: ε grows only by a small constant
factor.

I Substantially simplifies the task faced by the Refreshing
procedure.

6 / 23

The new NAND gate

Base: Start from LWE encryption with message space: Zt , t > 2.

Idea: Different message space for input (t = 4) and output (t = 2).

Advantages:

I Cost of computing Homomorphic NAND is negligible (similar
to a single private key cryptographic operation.)

I Excellent noise growth: ε grows only by a small constant
factor.

I Substantially simplifies the task faced by the Refreshing
procedure.

6 / 23

A simpler refreshing procedure

Base: General approach of [Alperin-Sheriff,Peikert’14] + Ring
variant of [Gentry,Sahai,Waters’13] Homomorphic encryption.

Idea: Implement arithmetic modq in the exponent

Improvement over [AP14]:

I Theoretical speed-up of Ω̃(log3 q)

I Smaller final error.

Combined with the problem simpification brought by our cheap
NAND computation, this results in bootstrapping cost ≈ 0.6
second, at estimated ≈100-bit security level.

7 / 23

A simpler refreshing procedure

Base: General approach of [Alperin-Sheriff,Peikert’14] + Ring
variant of [Gentry,Sahai,Waters’13] Homomorphic encryption.

Idea: Implement arithmetic modq in the exponent

Improvement over [AP14]:

I Theoretical speed-up of Ω̃(log3 q)

I Smaller final error.

Combined with the problem simpification brought by our cheap
NAND computation, this results in bootstrapping cost ≈ 0.6
second, at estimated ≈100-bit security level.

7 / 23

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

8 / 23

LWE encryption

Idea: use an LWE sample as a mask

Encs(m) = (a, b = 〈a , s〉+ e + m · q/2)

Decs(a, b) = b2(b − 〈a , s〉)/qe

m · q2 + e

m · q4 + e m · q4 + e

1

0

1
2

3
0

1
2

3
0

binary messages

Messages in Z4 Smaller error

LWE2
s (m, q/4)

LWE4
s (m, q/8) LWE4

s (m, q/16)

9 / 23

LWE encryption

Idea: use an LWE sample as a mask

Encs(m) = (a, b = 〈a , s〉+ e + m · q/2)

Decs(a, b) = b2(b − 〈a , s〉)/qe

m · q2 + e m · q4 + e

m · q4 + e

1

0
1

2
3
0

1
2

3
0

binary messages Messages in Z4

Smaller error

LWE2
s (m, q/4) LWE4

s (m, q/8)

LWE4
s (m, q/16)

9 / 23

LWE encryption

Idea: use an LWE sample as a mask

Encs(m) = (a, b = 〈a , s〉+ e + m · q/2)

Decs(a, b) = b2(b − 〈a , s〉)/qe

m · q2 + e m · q4 + e m · q4 + e

1

0
1

2
3
0

1
2

3
0

binary messages Messages in Z4 Smaller error
LWE2

s (m, q/4) LWE4
s (m, q/8) LWE4

s (m, q/16)

9 / 23

A Cheaper NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

=

1
2

3
00

11

0

q
80

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

10 / 23

A Cheaper NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

= 1
2

3
0

0

11

0

q
80

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

10 / 23

A Cheaper NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

= 1
2

3
0

0

11

0

q
80

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

10 / 23

A Cheaper NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

=

1
2

3
0

0

1

1

0

q
80

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

10 / 23

A Cheaper NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

=

1
2

3
00

1

1

0

q
8

0

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

10 / 23

A Cheaper NAND gate

Idea, use: m1 ∧m2 ⇔ m1 + m2 = 2 mod 4.
Consider binary messages {0, 1} encrypted with t = 4:

1
2

3
0

+ 1
2

3
0

=

1
2

3
00

11

0

q
8

0

1

5q
8

Consider it as a ciphertext for t = 2 and rotate.

HomNAND:

LWE4
s (m1,

q
16)×LWE4

s (m2,
q
16) → LWE2

s (m1 ∧̄ m2,
q
4)

(a1, b1) , (a2, b2) 7→ (a1 + a2, b1 + b2 + 5q
8)

10 / 23

Lightweight Refreshing

We have HomNAND:

LWE4
s

(
m1,

q

16

)
× LWE4

s

(
m2,

q

16

)
→ LWE2

s

(
m1 ∧̄ m2,

q

4

)
To build an FHE we require a relaxed function LightRefresh:

LightRefresh : LWE2
s (m, q/4)→ LWE4

s (m, q/16)

whereas previous works required:

Refresh : LWE2
s (m, q/4)→ LWE2

s (m,E) ,E � q.

As usual, we will use Key Switching, Mod Switching, and
Homomorphic Decryption.

11 / 23

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

12 / 23

Decryption using an Accumulator

Decs(a, b) = msb (b − 〈a , s〉 mod q)

Decs(a, b):

acc ← b

for i = 1 to n:

acc ← acc − ai · si mod q

Return msb(acc)

We need to perform this algorthm given Encryption of the key s.

I Initialization

I Addition modq with a fresh ciphertext E (a · si)
I A final test for the msb, in LWE form

13 / 23

Decryption using an Accumulator

Decs(a, b) = msb (b − 〈a , s〉 mod q)

Homomorphic decryption given E (s):

E (acc)← b

for i = 1 to n:

E (acc)← E (acc)− E (ai · si) mod q

Return LWE(msb(acc))

We need to perform this algorthm given Encryption of the key s.

I Initialization

I Addition modq with a fresh ciphertext E (a · si)
I A final test for the msb, in LWE form

13 / 23

Decryption using an Accumulator

Decs(a, b) = msb (b − 〈a , s〉 mod q)

Homomorphic decryption given E (s):

E (acc)← b

for i = 1 to n:

E (acc)← E (acc)− E (ai · si) mod q

Return LWE(msb(acc))

We need to perform this algorthm given Encryption of the key s.

I Initialization

I Addition modq with a fresh ciphertext E (a · si)
I A final test for the msb, in LWE form

13 / 23

Implementing the Accumulator

The framework follows from [AP14]:

I Use (×)-homomorphism to implement (Zq,+)

I Use (+)-homomorphism to implement msb testing.

[AP14] builds (Zq,+) as an outer structure:
convolution products and CRT.

We optimize this construction in the case of cyclotomic ring

R = Z[X]/(XN + 1).

We embed Zq in the group (〈X 〉,×), the group of roots of unity.

14 / 23

Ring version of [GSW13]

Q = 2k , Gadget matrix: G = [I, 2I, 4I . . . 2k−1I]t ∈ Zn+1×(n+1)k
Q .

Es(m) = [A,As + e] + m · G

Decs: extract an LWEs ciphertext (last row) and decrypt.
Supports Add. and Mult. for small messages m ∈ {−1, 0, 1}.

Cyclotomic ring R = Z[X]/(XN + 1), 2N = q is a power of 2.

Generalized Gadget matrix: G = u · [I, bI, b2I . . . bk−1I]t ∈ R2×2k
Q .

Es(m ∈ Zq) = [a, a · s + e] + Xm · G

Supports addition for all message m ∈ Zq.

15 / 23

Ring version of [GSW13]

Q = 2k , Gadget matrix: G = [I, 2I, 4I . . . 2k−1I]t ∈ Zn+1×(n+1)k
Q .

Es(m) = [A,As + e] + m · G

Decs: extract an LWEs ciphertext (last row) and decrypt.
Supports Add. and Mult. for small messages m ∈ {−1, 0, 1}.

Cyclotomic ring R = Z[X]/(XN + 1), 2N = q is a power of 2.

Generalized Gadget matrix: G = u · [I, bI, b2I . . . bk−1I]t ∈ R2×2k
Q .

Es(m ∈ Zq) = [a, a · s + e] + Xm · G

Supports addition for all message m ∈ Zq.

15 / 23

The group of roots of unity and msb

m 0 1 . . . q
2 − 1 q

2
q
2 + 1 . . . q − 1

Xm 1 X . . . XN−1 −1 −X . . . −XN−1

xm


1
0
...
0




0
1
...
0

 . . .


0
0
...
1



−1
0
...
0




0
−1

...
0

 . . .


0
0
...
−1



〈1 , xm〉 1 1 . . . 1 −1 −1 . . . −1

Take the vector representation of Xm

Sum all the coordinates

〈1 , xm〉+ 1

2
=

(−1)msb(m) + 1

2
= msb(m).

16 / 23

Improvements

Improvement over the bootstrapping of [AP14]:

I Generic Ω̃(n) speed-up from Ring structure

I An extra Ω̃(log3 q) speed-up by embedding

I Error after bootstrapping reduced by O(
√
n log n).

In addition to our new NAND gate, implementation becomes
reasonable.

17 / 23

Outline

Introduction/Summary

The new NAND gate

Simpler Refreshing

Conclusion

18 / 23

The ciphertext cycle

LWE
4/q
n (m1, q/16)

LWE
4/q
n (m2, q/16)

NAND LWE
2/q
n (m, q/4)

LWE
4/Q
N

(
m, σÕ(N3/2)

)
ACC operations

and msbTest

LWE
4/Q
n

(
m, σÕ(N3/2)

)
Key Switch

LWE
4/q
s1 (m, q/16)

Modulus Switch

19 / 23

Parameter Proposal

Parameters.
LWE parameters: n = 500 q = 512.
Ring-GSW parameters: N = 1024 Q = 232 .
Gadget Matrix: Q/8 · [I, 211 · I, 222 · I]

Key Size.
Bootstrapping Key Size 1032 MB
Key Switching Key Size: +314 MB

}
6 1.3GB

Running time.
Per NAND gate: 48, 000 FFTs ≈ 0.48 sec

Security.
Root-Hermite factor the LWE scheme δ1 = 1.0064
Root-Hermite factor Ring-GSW scheme δ2 = 1.0064

20 / 23

Proof of Concept Implementation

I Coded in 4 days·man
room for implementation level optimization.

I Reasonably concise: 6 600 lines of C++ code
[HElib]: ≈ 20, 000 lines

I Using FFT3 over C at double precision
in dimension 2048 to obtain negacyclic-FFT.

potentially slower than 32-bits NTT in dimension 1024.

Result: Homomorphic NAND & refreshing in 0.61 seconds
on a single standard 64-bit core at 3Ghz.

Not much slower than the amortized cost of bootstrapping in
[HElib], no delays, hackable.

3FFTW library: The Fastest Fourier Transform in the West
21 / 23

Beyond binary gates

Replace msb by other membership testing function. Obtain :

I moderate fan-in symmetric gates
majority, threshold gates, neurons

I multiple outputs gates

Figure : Full-adder in one refresh (3-inputs, 2-outputs)

0
1

2
3

4

5
0

1

2
3

4

5

m1 + m2 + m3 ∈ {1, 3, 5} m1 + m2 + m3 ∈ {2, 3, 4}
m1 ⊕m2 ⊕m3 carry(m1,m2,m3)

22 / 23

Git it

Open Source: https://github.com/lducas/FHEW

> click it, clone it, pull it, branch it,

> hack it, use it, break it, fix it,

> view it, code it, jam - debug it,

> write it, cut it, paste it, save it,

> load it, check it, quick - rewrite it,

> commit, push it and pull-request it

> ...

> Homomorphic ... Homomorphic ...

Updated full paper: https://eprint.iacr.org/2014/816

Acknowledgements

The authors are thankful to Igors Stepanovs and Max Fillinger for
helpful conversations and comments on this work.

23 / 23

https://github.com/lducas/FHEW
https://eprint.iacr.org/2014/816

	Introduction/Summary
	The new NAND gate
	Simpler Refreshing
	Conclusion

