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LWE Applications

Many crypto primitives are based on Learning With Errors

Trapdoor functions + IBE [Gentry et al., 2008]

Public-key and symmetric-key cryptosystems
[Regev, 2009], [Peikert, 2009], [Applebaum et al., 2009]

FHE
[Brakerski and Vaikuntanathan, 2011],[Brakerski, 2012],[Gentry et al., 2013]

Our Goal

Better understand the hardness of LWE through an algorithmic analysis, in
order to propose concrete security parameters for these schemes
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Prior Work

Lattice reduction algorithms (LLL, BKZ, ...)

⇒ No precise analysis for large dimensions

Blum-Kalai-Wasserman (BKW) Algorithm
⇒ Asymptotic complexity well understood

2
Θ
(

k
log k

)
for LPN

2Θ(k) for LWE

⇒ Precise algorithmic analysis

LPN [Blum et al., 2003], [Levieil and Fouque, 2006]
[Fossorier et al., 2006], [Bernstein and Lange, 2012]

[Guo et al., 2014], [Bogos et al., 2015]

LWE [Albrecht et al., 2013, 2014]
LWR

This talk
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LWE Definition

Definition (LWE Oracle)

Let k, q be positive integers. A Learning with Errors (LWE) oracle Πs,χ for
a hidden vector s ∈ Zk

q and a probability distribution χ over Zq is an
oracle returning a U←− Zk

q , 〈a, s〉+ ν︸ ︷︷ ︸
c

 ,

where ν ← χ.

Definition (Search-LWE)

The Search-LWE problem is the problem of recovering the hidden secret s
given n queries (a(j), c(j)) ∈ Zk

q × Zq obtained from Πs,χ.
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Error Distribution(s)

Two main Gaussian error distributions appear in the literature

Definition (Rounded Gaussian Distribution
[Regev, 2009; Albrecht et al., 2013])

Sample x ∼ N (0, σ2).

Output dxc (mod q) ∈ ]− q
2 ,

q
2 ].

Definition (Discrete Gaussian Distribution
[Regev, 2009; Brakerski et al., 2013])

Pr[x ] ∝ exp(−x2/(2σ2)) , for x ∈ ]− q

2
,
q

2
] .

⇒ Our results apply to both distributions for practical parameters

⇒ We focus on the discrete Gaussian distribution for this talk
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The BKW Algorithm

Reduction Phase ([Blum et al., 2003; Albrecht et al., 2013])

In each oracle query, split a into r blocks of b elements (r · b = k)([
a1 . . . ab

] [
ab+1 . . . a2b

]
. . .

[
a(r−1)b+1 . . . arb

]
| c
)

[ 0 0 1 ] [ 2 -1 4 ] [ -2 0 1 ] −1

[ 0 0 2 ] [ 0 2 0 ] [ -1 4 -3 ] −5

. . .

BKW reduction in Z9
11, r = 3, b = 3
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a1 . . . ab

] [
ab+1 . . . a2b

]
. . .

[
a(r−1)b+1 . . . arb

]
| c
)

Iterate r − 1 times until a single non-zero block remains

[ 0 0 0 ] [ 0 0 0 ] [ -1 4 -3 ] 1
[ 0 0 0 ] [ 0 0 0 ] [ 2 0 -1 ] −2
[ 0 0 0 ] [ 0 0 0 ] [ 1 -4 0 ] 1
[ 0 0 0 ] [ 0 0 0 ] [ -1 -1 3 ] 0

. . .

BKW reduction in Z9
11, r = 3, b = 3
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The BKW Algorithm

Solving Phase ([Albrecht et al., 2013])

Apply a last reduction to obtain queries with 1 non-zero element

The noise now corresponds to the sum of 2r variables drawn from χ

c ′ − 〈a′, s〉 = ν1 ± ν2 ± · · · ± ν2r

Guess 1 element of the secret s by maximum-likelihood estimation

Let m denote the number of remaining queries
Exhaustive search through all q possibilities → Θ(m · q)
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Florian Tramèr (EPFL) Better Algorithms for LWE and LWR Eurocrypt 2015 7 / 19



The BKW Algorithm

Solving Phase ([Albrecht et al., 2013])

Apply a last reduction to obtain queries with 1 non-zero element

The noise now corresponds to the sum of 2r variables drawn from χ

c ′ − 〈a′, s〉 = ν1 ± ν2 ± · · · ± ν2r

Guess 1 element of the secret s by maximum-likelihood estimation

Let m denote the number of remaining queries
Exhaustive search through all q possibilities → Θ(m · q)
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The BKW Algorithm (Discrete Transforms)

Alternative Solving Phase

Guess a block of b elements of s at once by computing a DFT

Idea proposed by Levieil and Fouque for LPN [Levieil and Fouque, 2006]

Significant improvement over original BKW [Blum et al., 2003]

Still asymptotically 2Θ( k
log k )

Can be generalized for LWE (and LWR)

One reduction less → lower noise
FFT algorithms → Θ(m′ + qb · b · log q)

Could be better than
Θ(m · q) for MLE
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Our Results

We improve the results of [Albrecht et al., 2013] by applying a DFT in
the solving phase

Remove heuristic assumptions about sums of rounded Gaussians
Conceptually simpler analysis → closed form expression for time
complexity

First algorithmic cryptanalysis of LWR using similar techniques
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Our Solving Phase

After (r-1) reduction rounds, we have m queries (a(i), c(i)) remaining
⇒ View the a(i) as elements in Zb

q

⇒ Let s ′ ∈ Zb
q be the secret block to recover.

⇒ Let θq := exp(2πi/q)

Define
f (x) :=

m∑
j=1

1{a(j)=x} θ
c(j)

q , ∀x ∈ Zb
q

The DFT of f is

f̂ (α) =
m∑
j=1

θ
−(〈a(j),α〉−c(j))
q , ∀α ∈ Zb

q

In particular

f̂ (s ′) =
m∑
j=1

θ
−(ν j,1±···±ν j,2r−1 )
q
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DFT Distinguisher

For the correct secret block s ′, we have

E
[
f̂ (s ′))

]
=

m∑
j=1

E
[
θ
−(ν j,1±···±ν j,2r−1 )
q

]

=
m∑
j=1

E
[

cos

(
2π

q
ν j ,1

)
+ i · sin

(
2π

q
ν j ,1

)]2r−1

ν j ,l are iid
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DFT Distinguisher

Lemma

For q an odd integer, let X ∼ χ where χ is a discrete Gaussian over Zq

with parameter σ. Let Y ∼ 2πX/q. Then

E[cos(Y )] ≥ 1− 2π2σ2

q2
and E[sin(Y )] = 0 .

Proof: Follows from Lemma 1.3 in [Banaszczyk, 1993].

ν j ,l are iid
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2π

q
ν j ,1
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.

For a fixed α 6= s ′, we have

E
[
f̂ (α)

]
= 0 .

ν j ,l are iid
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DFT Distinguisher

Example graph of Re(f̂ ), for small parameters adapted from [Regev, 2009]:

q = 17, σ = 0.85, r = 6, b = 4, m = 212

E
[
f̂ (s ′)

]
≥ 811

E
[
f̂ (α)

]
= 0
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DFT Distinguisher

Algorithm: output argmax
α

Re(f̂ (α))

Failure Probability:

Pr[argmax
α

Re(f̂ (α)) 6= s ′] ≤ qb · exp

(
−m

8
·
(

1− 2π2σ2

q2

)2r
)
.

⇒ Follows from Hoeffding’s inequality and a union bound
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LWE Results

Regev’s cryptosystem [Regev, 2009] with success probability 0.99.

q = nextPrime(k2), σ = O

(
q√

k log2 k

)
k q log(#ops) log(#ops)

[Albrecht et al., 2013]

64 4 099 52.62 54.85
80 6 421 63.23 65.78
96 9 221 73.72 76.75

112 12 547 85.86 87.72
128 16 411 95.03 98.67
160 25 601 115.87 120.43
224 50 177 160.34 163.76
256 65 537 178.74 185.35
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Learning With Roundings

Deterministic variant of LWE

Hardness reductions from LWE [Banerjee et al., 2012; Alwen et al., 2013]

⇒ Exponential parameters or bound on oracle samples

Many applications for PRFs [Banerjee et al., 2012; Boneh et al., 2013]
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LWR Definition

Definition (LWR Oracle)

Let k and q ≥ p ≥ 2 be positive integers. A Learning with
Rounding (LWR) oracle Λs,p for a hidden vector s ∈ Zk

q , s 6= 0 is an oracle
returning a U←− Zk

q ,

⌈(
p

q

)
〈a, s〉

⌋
︸ ︷︷ ︸

c

 .

⇒ For fixed a, s the ‘errors’ introduced by the oracle are deterministic

Definition (Search-LWR)

The Search-LWR problem is the problem of recovering the hidden secret s
given n queries (a(j), c(j)) ∈ Zk

q × Zp obtained from Λs,p.
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Algorithm Analysis (sketch)

Same algorithm as for LWE but the analysis is more tricky

Analysis of the characteristic function of the rounding errors

E
[
e itξ
]

for t ∈ R, ξ =

(
p

q

)
〈a, s〉 − c

In LWR, a and ξ are not independent!
Since a(i) ⊥⊥ a(j) we still have ξ(i) ⊥⊥ ξ(j) for i 6= j

For q prime and p ≥ 4, we get

A lower bound for E
[
f̂ (s ′)

]
An upper bound for E

[
f̂ (α)

]
for a fixed α 6= s ′

Florian Tramèr (EPFL) Better Algorithms for LWE and LWR Eurocrypt 2015 17 / 19



Algorithm Analysis (sketch)

Same algorithm as for LWE but the analysis is more tricky

Analysis of the characteristic function of the rounding errors

E
[
e itξ
]

for t ∈ R, ξ =

(
p

q

)
〈a, s〉 − c

In LWR, a and ξ are not independent!
Since a(i) ⊥⊥ a(j) we still have ξ(i) ⊥⊥ ξ(j) for i 6= j

For q prime and p ≥ 4, we get

A lower bound for E
[
f̂ (s ′)

]
An upper bound for E

[
f̂ (α)

]
for a fixed α 6= s ′
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Florian Tramèr (EPFL) Better Algorithms for LWE and LWR Eurocrypt 2015 17 / 19



Algorithm Analysis (sketch)

Same algorithm as for LWE but the analysis is more tricky

Analysis of the characteristic function of the rounding errors

E
[
e itξ
]

for t ∈ R, ξ =

(
p

q

)
〈a, s〉 − c

In LWR, a and ξ are not independent!
Since a(i) ⊥⊥ a(j) we still have ξ(i) ⊥⊥ ξ(j) for i 6= j

For q prime and p ≥ 4, we get

A lower bound for E
[
f̂ (s ′)

]
An upper bound for E

[
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]
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Results

Example graph of Re(f̂ ) for small parameters adapted from
[Regev, 2009] and [Alwen et al., 2013]

q = 17, p = 5, r = 6, b = 4, m = 212

E
[
f̂ (s ′)

]
≥ 488

E
[
f̂ (α)

]
≤ 0.0003

Florian Tramèr (EPFL) Better Algorithms for LWE and LWR Eurocrypt 2015 18 / 19



Open Problems

Find a better algorithm for LWR that leverages the fact that errors
are deterministic

Prove that LWR with polynomial parameters and unlimited oracle
samples is hard

Analyze the heuristic independence-assumptions used in various
works on BKW for LPN and LWE
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