gt

\
RUHR-UNIVERSITAT BOCHUM

On Computing Nearest Neighbors with
Applications to Decoding of Binary Linear Codes

Eurocrypt 2015, Sofia

hg'i

Alexander May, llya Ozerov
Chair for Cryptology and IT Security
Horst Gértz Institut B
fiir IT-Sicherheit B

Horst Gortz Institute, Ruhr University Bochum

RUHR-UNIVERSITAT BOCHUM

Qutline

1. Algorithm for the Nearest Neighbor Problem

2. Application to Decoding of Random Binary Linear Codes

o Stern (1989)
o BJMM (2012)

RUHR-UNIVERSITAT BOCHUM

Nearest Neighbor Problem

In our work we discuss the (m, ¢, A) Nearest Neighbor Problem in Fy:

Given two lists L, R C FJ' of £ uniform and pairwise independent
vectors, find all (u,v) € L x R with a Hamming distance of A.

m m
~ ~~=
\"

ZB%.E

Interesting case: £ = 2™

RUHR-UNIVERSITAT BOCHUM .
h "

Horst Gor\gsmu\ "

f0r T-Sicherheit B

Nearest Neighbor Problem

In our work we discuss the (m, ¢, A) Nearest Neighbor Problem in Fy:

Given two lists L, R C FJ' of £ uniform and pairwise independent
vectors, find all (u,v) € L x R with a Hamming distance of A.

/IL r-L -
Naive approach: O(¢?)
¢ % VoL,

Interesting case: £ = 2™

RUHR-UNIVERSITAT BOCHUM .
h "

Horst Gor\gsmu\ "

f0r T-Sicherheit B

Nearest Neighbor Problem

In our work we discuss the (m, ¢, A) Nearest Neighbor Problem in Fy:

Given two lists L, R C FJ' of £ uniform and pairwise independent
vectors, find all (u,v) € L x R with a Hamming distance of A.

Naive approach O(1?)
/ o), ifA=12

Interesting case: £ = 2™

RUHR-UNIVERSITAT BOCHUM

Nearest Neighbor Problem

In our work we discuss the (m, ¢, A) Nearest Neighbor Problem in Fy:

Given two lists L, R C FJ' of £ uniform and pairwise independent
vectors, find all (u,v) € L x R with a Hamming distance of A.

Naive approach O(1?)
/), |f A= 7
. butO(), if A=0

Interesting case: £ = 2™

RUHR-UNIVERSITAT BOCHUM

Nearest Neighbor Problem

In our work we discuss the (m, ¢, A) Nearest Neighbor Problem in Fy:

Given two lists L, R C FJ' of £ uniform and pairwise independent
vectors, find all (u,v) € L x R with a Hamming distance of A.

Naive approach O(1?)
/ (), fA=3F
. butO(), if A=0
o subquadratic, if 0 < A < 37

Interesting case: £ = 2™

RUHR-UNIVERSITAT BOCHUM . M
h "

Previous Results

f0r T-Sicherheit B

There are mainly two previous results solving the problem:

« Valiant (2012): O(¢*8) with fast matrix multiplication:
o exponent stays at 1.8 even for small values of A.

RUHR-UNIVERSITAT BOCHUM . M
h "

Previous Results

f0r T-Sicherheit B

There are mainly two previous results solving the problem:

« Valiant (2012): O(¢*8) with fast matrix multiplication:
o exponent stays at 1.8 even for small values of A.

. 1
1-4

o Dubiner (2010): O(¢*~m) with “bucketing codes™:
o pros:
» best known result for small A.
> interpolates between the special cases A =0 and A = 7.

RUHR-UNIVERSITAT BOCHUM . M
h "

Previous Results

f0r T-Sicherheit B

There are mainly two previous results solving the problem:

« Valiant (2012): O(¢*8) with fast matrix multiplication:
o exponent stays at 1.8 even for small values of A.

1
« Dubiner (2010): O(¢*~#) with "bucketing codes':
o pros:
» best known result for small A.
> interpolates between the special cases A =0 and A = 7.

o cons:

» only holds for ¢ that are sub-exponential in m.
» so far no result for the case of £ = 2 ™.

RUHR-UNIVERSITAT BOCHUM . M
h "

Our Result

f0r T-Sicherheit B

We present an Algorithmic Tool that
e gives a conceptually easy algorithm,
e is build for list sizes £ that are exponential in m,

e implies a better decoding algorithm for linear codes.

RUHR-UNIVERSITAT BOCHUM

Our Result o g

We present an Algorithmic Tool that
e gives a conceptually easy algorithm,
e is build for list sizes £ that are exponential in m,

e implies a better decoding algorithm for linear codes.

complexity exponent
24 ¢ — om/5 o
15+
11

+ + + + + é
0.1 02030405 ™

RUHR-UNIVERSITAT BOCHUM . M
h "

High Level Idea

f0r T-Sicherheit B

o Algorithm creates exponentially many easy copies of the problem.
o by reducing the number of elements, individually in L and R.

o It guarantees that “distance A pairs” are in one of these copies.

RUHR-UNIVERSITAT BOCHUM " @
h "

High Level Idea

f0r T-Sicherheit B

m m m m m m

58 - B0 Ge

o Algorithm creates exponentially many easy copies of the problem.
o by reducing the number of elements, individually in L and R.

o It guarantees that “distance A pairs” are in one of these copies.

RUHR-UNIVERSITAT BOCHUM

Nearest Neighbor Algorithm g

Input: L, R, m, ¢, A
Output: All (u,v) € L x R with HammingDistance(u,v) = A

1: choose optimized parameters r and w

2: repeat r times:
A: choose a uniformly random partition of the columns {1, ..., m}
B: consider all elements of L, R with weight w on these columns

C: brute-force all these pairs and output those with distance A

RUHR-UNIVERSITAT BOCHUM

Example: A =2

Problem: find all pairs with distance 2.

m m

—— —
(00110110) (10101001)
(11010010) (10000111)
(00110110) (01011001)
(00011110) (00011011)
(00011101) (01010011)
(00110101) (10000111)
(11001010) (00011011)
(00110101) (01101100)
(10101010) (00101011)
(01010101) (10110010)

RUHR-UNIVERSITAT BOCHUM

Example: A =2

A: choose a uniformly random partition of the columns {1,..., m}
f—’u /—/L
(00110110) (10101001)))
(11010010) (10000111)
(00110110) (01011001)
(00011110) (00011011)
(00011101) (01010011)
(00110101) (10000111)
(11001010) (00011011)
(00110101) (01101100)
(10101010) (00101011)
(01010101) (10110010)

RUHR-UNIVERSITAT BOCHUM

N
I
<
9
a
€
@
X
L

B: consider all elements L, R with weight w = 1 on these columns

10 01

—

~— ~—

~—

11 10)
01 10)

RUHR-UNIVERSITAT BOCHUM

N
I
<
9
a
€
@
X
L

C: brute-force all these pairs and output those with distance A =2

RUHR-UNIVERSITAT BOCHUM

Example: A =2

hgi

In most steps we won't find a pair with distance 2. Repeat!

(11001010)

$\\\\ftzifi\\\9

(01101100)

N

~

AN TN NN NN NN N N
= A = - O - O

3 — O -4 -4 O OO - - - O
OO " = - O+ 0 O
OO+ O+ OO —+H O O

— e N N e N N N N N

o W Nann g s 1amn e N e N

OO0 OO0+ -0+ O -
g O OO -H - O -+ O - O
= - - O O
O - O O O O = O O

N N N e N N N N N

W0

What is a ‘good’ partition? If both vectors with A = 2 have weight w.

(q\]

I
=
3 <
2 ve
= 9
z Q
: E
5 ®©
£ X
z W

RUHR-UNIVERSITAT BOCHUM

Example: A =2

In this case pairs with distance 2 ‘survive'.

m m

——— —_
(00110110) |5 - -
\o. - i|(10000111)
(00110110) 1 = \ 7

~|(10000111)

(10101010)| %

(10110010)
- @7

-

RUHR-UNIVERSITAT BOCHUM

Nearest Neighbor Algorithm g

Input: L, R, m, ¢, A
Output: All (u,v) € L x R with HammingDistance(u,v) = A

1: choose optimized parameters r and w

2: repeat r times:
A: choose a uniformly random partition of the columns {1, ..., m}
B: consider all elements of L, R with weight w on these columns

C: brute-force all these pairs and output those with distance A

RUHR-UNIVERSITAT BOCHUM . @
h "

Choice of weight w and repetitions r

f0r T-Sicherheit B

o w controls how many vectors ‘survive' the filtering

o brute-force compares each ‘survivor’ of L with each of R

= w(m,{) is chosen such that expected ©(1) vectors ‘survive'

RUHR-UNIVERSITAT BOCHUM . M
h "

Choice of weight w and repetitions r

f0r T-Sicherheit B

o w controls how many vectors ‘survive' the filtering

o brute-force compares each ‘survivor’ of L with each of R

= w(m,{) is chosen such that expected ©(1) vectors ‘survive'

e u,v with dist(u,v) = A have to 'survive' in at least one repetition

= choice of r(m, A, w) guarantees it with overwhelming probability

RUHR-UNIVERSITAT BOCHUM

Time Complexity g

Steps A (sampling) and C (brute-force) are easy.
But how do we compute the list of ‘weight w vectors' in step B?
o Traversing the whole input list would be worse than brute-force!

Instead: tree based algorithm, decreasing list sizes on each level.
o This makes our algorithm run in time O(r).

o Unfortunately, it introduces a polynomial overhead of m?.

o Open Problem: Is it possible to get rid of this polynomial?

RUHR-UNIVERSITAT BOCHUM

Application: Syndrome Decoding

Let H be a parity check matrix of a random binary linear [n, k, d] code.

Decoding Problem: find error e € FJ, weight(e) = % st. H-e=s.

RUHR-UNIVERSITAT BOCHUM .
h "

Horst Gor\zgsmm "

f0r T-Sicherheit B

Application: Syndrome Decoding

Let H be a parity check matrix of a random binary linear [n, k, d] code.

Decoding Problem: find error e € FJ, weight(e) = % st. H-e=s.

Decoding Theorem

Our decoding algorithm solves the Decoding Problem in 20-94737.

RUHR-UNIVERSITAT BOCHUM

Overview

BJMM (2012)
20.0494'1

hg1:

Horst Gortz Institut B
f0r T-Sicherheit B

Stern (1989) Prange (1962)
20.0557" 20.0576'1

Main Decoding Theorem
20.0473n

Basic Decoding Theorem
20.0550n

RUHR-UNIVERSITAT BOCHUM . M
h "

Previous Results

f0r T-Sicherheit B

Decoding Problem: find error e € F3, weight(e) = ¢ s.t. H-e =s.

o Prange (1962) uses a brute-force approach:

o guess a small part of e that contains all ones
o then use linear algebra to efficiently compute that part

RUHR-UNIVERSITAT BOCHUM . M
h "

Previous Results

f0r T-Sicherheit B

Decoding Problem: find error e € F3, weight(e) = ¢ s.t. H-e =s.

o Prange (1962) uses a brute-force approach:
o guess a small part of e that contains all ones
o then use linear algebra to efficiently compute that part
o Stern (1989) generalizes to a meet-in-the-middle approach:

o search for exact collisions in e
o use linear algebra to check if the weight matches

RUHR-UNIVERSITAT BOCHUM . M
h "

Previous Results

f0r T-Sicherheit B

Decoding Problem: find error e € F3, weight(e) = ¢ s.t. H-e =s.

o Prange (1962) uses a brute-force approach:

o guess a small part of e that contains all ones
o then use linear algebra to efficiently compute that part

o Stern (1989) generalizes to a meet-in-the-middle approach:

o search for exact collisions in e
o use linear algebra to check if the weight matches

Our approach: search directly for approximate collisions in e

RUHR-UNIVERSITAT BOCHUM . @
h "

Our Decoding Algorithm

fur IT-Sicherheit B

weight g
7\

e

H _

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).

RUHR-UNIVERSITAT BOCHUM

Our Decoding Algorithm

weight g
7\

L & [& [e |

P. P.| Q |

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q1 define A; = Q1. P;and t := Ql.s.

RUHR-UNIVERSITAT BOCHUM

Our Decoding Algorithm

weight g
7\

&

(S)

€3

Al

Az

hg1 @

vwsnn l

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).

2. Multiply both sides by Q 1, define A; :=

Q*I-P- andt:=Ql.s.

o Hope that the error vector splits in weights 2, 2, and S —p.

RUHR-UNIVERSITAT BOCHUM

Our Decoding Algorithm

weight 2 weight 2 weight g—p

L & [& [& |

A A | | |t

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q 1, define A; = Ql. P;and t .= Q1l.s.
o Hope that the error vector splits in weights £, £, and % —p.

o Move the A, - e, part on the other side of the equation.

RUHR-UNIVERSITAT BOCHUM

Our Decoding Algorithm

weight 2 weight %—p

L& | e

A 1+

Horst Gortz Institut B
fur IT-Sicherheit B

weight 2

2

> |1

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q 1, define A; = Ql. P;and t := Q1l.s.

o Hope that the error vector splits in weights £, £, and % —p.

)

o Move the A, - e, part on the other side of the equation.
o Since e3 is multiplied by I, both sides are approximately the same.

RUHR-UNIVERSITAT BOCHUM

Our Decoding Algorithm

weight 2 weight 2
* —

A,

A
o
=+
|
>

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q 1, define A; ;= Q 1-P;and t := Q !-s.
o Hope that the error vector splits in weights 2, £, and % — p.

o Move the A; - ey part on the other side of the equation.
o Since e3 is multiplied by I, both sides are approximately the same.

3. Solve the Nearest Neighbor Problem with A = % —p.

I = 4 4 O O O O O
— O O O 4 +H = O O
O - O O O O v v~
O O 1 O O +H O —+H O
J|/[©2 0 = 0o S o~
SN N N N N N N N N
Q I o
_ AN AN AN AN AN NN NN
AAACCCCCC

Relfql
: T T O R B
[l e

t — A, - (11000)

— N N N N N N

Nearest Neighbor Problem with A
Al-eg=t—As-e;

RUHR-UNIVERSITAT BOCHUM

RUHR-UNIVERSITAT BOCHUM

d
5P

Nearest Neighbor Problem with A

Al-eg=t—As-e;

e e e e e s e e e
N 4 4 O O O O O O
— O OO 4 4+ O O O
O - O O O O = = = O
O O+ OO -+ 0O = O
O OO+ 100 o -
SN N N N N N N N N N
[S VI o I o N IR o N A o B o N B o VI o VI o I o
CAACACCCCCCC
e A I I e
B I = I I e e R I
2

— N N N N N N

RUHR-UNIVERSITAT BOCHUM .
h "

g "

"

Conclusion

o Algorithm for finding close vectors in large lists.
o Application: improved decoding exponent by 5%.

e Open Problems:

o ls it possible to get rid of the polynomial overhead?
o Are there more applications of the Nearest Neighbor algorithm?

RUHR-UNIVERSITAT BOCHUM . M
h "

Conclusion

f0r T-Sicherheit B

o Algorithm for finding close vectors in large lists.

o Application: improved decoding exponent by 5%.
e Open Problems:

o ls it possible to get rid of the polynomial overhead?
o Are there more applications of the Nearest Neighbor algorithm?

Thanks for your attention!

