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1. Algorithm for the Nearest Neighbor Problem
2. Application to Decoding of Random Binary Linear Codes

◦ Stern (1989)
◦ BJMM (2012)



Nearest Neighbor Problem

In our work we discuss the (m, `,∆) Nearest Neighbor Problem in F2:

Given two lists L,R ⊂ Fm
2 of ` uniform and pairwise independent

vectors, find all (u, v) ∈ L× R with a Hamming distance of ∆.

m︷ ︸︸ ︷ m︷ ︸︸ ︷
`



`
u

v∆

Interesting case: ` = 2λm

Naive approach: Õ(`2)

• Θ̃(`2), if ∆ = m
2

• but Õ(`), if ∆ = 0
• subquadratic, if 0 < ∆ < m

2 ?
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• but Õ(`), if ∆ = 0

• subquadratic, if 0 < ∆ < m
2 ?



Nearest Neighbor Problem

In our work we discuss the (m, `,∆) Nearest Neighbor Problem in F2:

Given two lists L,R ⊂ Fm
2 of ` uniform and pairwise independent

vectors, find all (u, v) ∈ L× R with a Hamming distance of ∆.

m︷ ︸︸ ︷ m︷ ︸︸ ︷
`



`
u

v∆

Interesting case: ` = 2λm

Naive approach: Õ(`2)
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Previous Results

There are mainly two previous results solving the problem:

• Valiant (2012): Õ(`1.8) with fast matrix multiplication:
◦ exponent stays at 1.8 even for small values of ∆.

• Dubiner (2010): Õ(`
1

1−∆
m ) with “bucketing codes”:

◦ pros:
I best known result for small ∆.
I interpolates between the special cases ∆ = 0 and ∆ = m

2 .
◦ cons:

I only holds for ` that are sub-exponential in m.
I so far no result for the case of ` = 2λm.
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Our Result

We present an Algorithmic Tool that
• gives a conceptually easy algorithm,
• is build for list sizes ` that are exponential in m,
• implies a better decoding algorithm for linear codes.

∆
m

complexity exponent

0.1 0.2 0.3 0.4 0.5

1

1.5

2 ` = 2m/5

sub-exponential `
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High Level Idea

m︷ ︸︸ ︷ m︷ ︸︸ ︷
`



`
u

v∆

m︷ ︸︸ ︷
...

m︷ ︸︸ ︷
... · · ·

m︷ ︸︸ ︷
...

m︷ ︸︸ ︷
...

m︷ ︸︸ ︷
u

m︷ ︸︸ ︷
v∆

•

• Algorithm creates exponentially many easy copies of the problem.
◦ by reducing the number of elements, individually in L and R.

• It guarantees that “distance ∆ pairs” are in one of these copies.
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Nearest Neighbor Algorithm

Input: L, R, m, `,∆

Output: All (u, v) ∈ L× R with HammingDistance(u, v) = ∆

1: choose optimized parameters r and w
2: repeat r times:
A: choose a uniformly random partition of the columns {1, . . . ,m}
B: consider all elements of L,R with weight w on these columns
C: brute-force all these pairs and output those with distance ∆



Example: ∆ = 2

Problem: find all pairs with distance 2.

m︷ ︸︸ ︷ m︷ ︸︸ ︷

`





`

(00110110)

(11010010)

(00110110)

(00011110)

(00011101)

(00110101)

(11001010)

(00110101)

(10101010)

(01010101)

(10101001)

(10000111)

(01011001)

(00011011)

(01010011)

(10000111)

(00011011)

(01101100)

(00101011)

(10110010)

2



Example: ∆ = 2

A: choose a uniformly random partition of the columns {1, . . . ,m}

m︷ ︸︸ ︷ m︷ ︸︸ ︷

`





`

(00110110)

(11010010)

(00110110)

(00011110)

(00011101)

(00110101)

(11001010)

(00110101)

(10101010)

(01010101)

(10101001)

(10000111)

(01011001)

(00011011)

(01010011)

(10000111)

(00011011)

(01101100)

(00101011)

(10110010)



Example: ∆ = 2

B: consider all elements L,R with weight w = 1 on these columns

m︷ ︸︸ ︷ m︷ ︸︸ ︷

`





`

(00110110)

(11010010)

(00110110)

(00011110)

(00011101)

(00110101)

(11001010)

(00110101)

(10101010)

(01010101)

(10101001)

(10000111)

(01011001)

(00011011)

(01010011)

(10000111)

(00011011)

(01101100)

(00101011)

(10110010)



Example: ∆ = 2

C: brute-force all these pairs and output those with distance ∆ = 2

m︷ ︸︸ ︷ m︷ ︸︸ ︷

`





`

(00110110)

(11010010)

(00110110)

(00011110)

(00011101)

(00110101)

(11001010)

(00110101)

(10101010)

(01010101)

(10101001)

(10000111)

(01011001)

(00011011)

(01010011)

(10000111)

(00011011)

(01101100)

(00101011)

(10110010)

[3]

[2]

[3]

[2]

[2]

[3]

〈1〉

[3]

[2]

[2]

[2]

[2]

[2]

[3]

[3]

[2]

[3]

〈1〉

[3]

[3]



Example: ∆ = 2

In most steps we won’t find a pair with distance 2. Repeat!

m︷ ︸︸ ︷ m︷ ︸︸ ︷

(11001010)

(01101100)

4 6= 2



Example: ∆ = 2

What is a ‘good’ partition? If both vectors with ∆ = 2 have weight w .

m︷ ︸︸ ︷ m︷ ︸︸ ︷

`





`

(00110110)

(11010010)

(00110110)

(00011110)

(00011101)

(00110101)

(11001010)

(00110101)

(10101010)

(01010101)

(10101001)

(10000111)

(01011001)

(00011011)

(01010011)

(10000111)

(00011011)

(01101100)

(00101011)

(10110010)

〈1〉

[2]

〈1〉

[2]

[3]

[2]

[2]

[2]

〈1〉

[3]

[2]

〈1〉

[4]

[3]

[3]

〈1〉

[3]

[2]

[2]

〈1〉



Example: ∆ = 2

In this case pairs with distance 2 ‘survive’.

m︷ ︸︸ ︷ m︷ ︸︸ ︷
(00110110)

(00110110)

(10101010)

(10000111)

(10000111)

(10110010)

2

2

2



Nearest Neighbor Algorithm

Input: L, R, m, `,∆

Output: All (u, v) ∈ L× R with HammingDistance(u, v) = ∆

1: choose optimized parameters r and w
2: repeat r times:
A: choose a uniformly random partition of the columns {1, . . . ,m}
B: consider all elements of L,R with weight w on these columns
C: brute-force all these pairs and output those with distance ∆



Choice of weight w and repetitions r

• w controls how many vectors ‘survive’ the filtering
• brute-force compares each ‘survivor’ of L with each of R

=⇒ w(m, `) is chosen such that expected Θ(1) vectors ‘survive’

• u, v with dist(u, v) = ∆ have to ’survive’ in at least one repetition

=⇒ choice of r(m,∆,w) guarantees it with overwhelming probability
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Time Complexity

• Steps A (sampling) and C (brute-force) are easy.
• But how do we compute the list of ‘weight w vectors’ in step B?

◦ Traversing the whole input list would be worse than brute-force!
• Instead: tree based algorithm, decreasing list sizes on each level.

◦ This makes our algorithm run in time Õ(r).
• Unfortunately, it introduces a polynomial overhead of mt .

◦ Open Problem: Is it possible to get rid of this polynomial?



Application: Syndrome Decoding

Let H be a parity check matrix of a random binary linear [n, k , d ] code.

Decoding Problem: find error e ∈ Fn
2, weight(e) = d

2 s.t. H · e = s.

Decoding Theorem

Our decoding algorithm solves the Decoding Problem in 20.0473n.
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Overview

20.0473n

20.0494n

20.0550n

20.0557n 20.0576n

Main Decoding Theorem

BJMM (2012)

Basic Decoding Theorem

Stern (1989) Prange (1962)



Previous Results

Decoding Problem: find error e ∈ Fn
2, weight(e) = d

2 s.t. H · e = s.

• Prange (1962) uses a brute-force approach:
◦ guess a small part of e that contains all ones
◦ then use linear algebra to efficiently compute that part

• Stern (1989) generalizes to a meet-in-the-middle approach:
◦ search for exact collisions in e
◦ use linear algebra to check if the weight matches

Our approach: search directly for approximate collisions in e
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Our Decoding Algorithm

=

weight d
2︷ ︸︸ ︷

e

H s

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
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weight d
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1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q−1, define Ai := Q−1 ·Pi and t := Q−1 ·s.



Our Decoding Algorithm

=

weight d
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e1 e2 e3
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1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q−1, define Ai := Q−1 ·Pi and t := Q−1 ·s.

◦ Hope that the error vector splits in weights p
2 ,

p
2 , and

d
2 − p.



Our Decoding Algorithm

=

weight p
2︷ ︸︸ ︷ weight p

2︷ ︸︸ ︷ weight d
2−p︷ ︸︸ ︷

e1 e2 e3

A1 A2 I t

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q−1, define Ai := Q−1 ·Pi and t := Q−1 ·s.

◦ Hope that the error vector splits in weights p
2 ,

p
2 , and

d
2 − p.

◦ Move the A2 · e2 part on the other side of the equation.



Our Decoding Algorithm

= −+

weight p
2︷ ︸︸ ︷ weight p

2︷ ︸︸ ︷weight d
2−p︷ ︸︸ ︷

e1 e2e3

A1 A2I t

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q−1, define Ai := Q−1 ·Pi and t := Q−1 ·s.

◦ Hope that the error vector splits in weights p
2 ,

p
2 , and

d
2 − p.

◦ Move the A2 · e2 part on the other side of the equation.
◦ Since e3 is multiplied by I, both sides are approximately the same.



Our Decoding Algorithm

≈ d
2−p −

weight p
2︷ ︸︸ ︷ weight p

2︷ ︸︸ ︷
e1 e2

A1 A2
t

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q−1, define Ai := Q−1 ·Pi and t := Q−1 ·s.

◦ Hope that the error vector splits in weights p
2 ,

p
2 , and

d
2 − p.

◦ Move the A2 · e2 part on the other side of the equation.
◦ Since e3 is multiplied by I, both sides are approximately the same.

3. Solve the Nearest Neighbor Problem with ∆ = d
2 − p.



Nearest Neighbor Problem with ∆ = d
2 − p

A1 · e1 ≈ t− A2 · e2

n−k︷ ︸︸ ︷ n−k︷ ︸︸ ︷

(k/2
p/2

)





(k/2
p/2

)

A1 · (00011)

A1 · (00101)

A1 · (01001)

A1 · (10001)

A1 · (10010)

A1 · (01010)

A1 · (00110)

A1 · (01100)

A1 · (10100)

A1 · (11000)

t− A2 · (00011)

t− A2 · (00101)

t− A2 · (01001)

t− A2 · (10001)

t− A2 · (10010)

t− A2 · (01010)

t− A2 · (00110)

t− A2 · (01100)

t− A2 · (10100)

t− A2 · (11000)



Nearest Neighbor Problem with ∆ = d
2 − p

A1 · e1 ≈ t− A2 · e2

n−k︷ ︸︸ ︷ n−k︷ ︸︸ ︷

(k/2
p/2

)





(k/2
p/2

)

A1 · (00011)

A1 · (00101)

A1 · (01001)

A1 · (10001)

A1 · (10010)

A1 · (01010)

A1 · (00110)

A1 · (01100)

A1 · (10100)

A1 · (11000)

t− A2 · (00011)

t− A2 · (00101)

t− A2 · (01001)

t− A2 · (10001)

t− A2 · (10010)

t− A2 · (01010)

t− A2 · (00110)

t− A2 · (01100)

t− A2 · (10100)

t− A2 · (11000)

∆



Conclusion

• Algorithm for finding close vectors in large lists.
• Application: improved decoding exponent by 5%.
• Open Problems:

◦ Is it possible to get rid of the polynomial overhead?
◦ Are there more applications of the Nearest Neighbor algorithm?

Thanks for your attention!
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