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LWE Applications

Many crypto primitives are based on Learning With Errors

@ Trapdoor functions + IBE [Gentry et al., 2008]

@ Public-key and symmetric-key cryptosystems
[Regev, 2009], [Peikert, 2009], [Applebaum et al., 2009]

e FHE
[Brakerski and Vaikuntanathan, 2011],[Brakerski, 2012],[Gentry et al., 2013]
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LWE Applications

Many crypto primitives are based on Learning With Errors

@ Trapdoor functions + IBE [Gentry et al., 2008]

@ Public-key and symmetric-key cryptosystems
[Regev, 2009], [Peikert, 2009], [Applebaum et al., 2009]

e FHE
[Brakerski and Vaikuntanathan, 2011],[Brakerski, 2012],[Gentry et al., 2013]

Better understand the hardness of LWE through an algorithmic analysis, in
order to propose concrete security parameters for these schemes
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o Lattice reduction algorithms (LLL, BKZ, ...)
= No precise analysis for large dimensions

e Blum-Kalai-Wasserman (BKW) Algorithm
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o Lattice reduction algorithms (LLL, BKZ, ...)
= No precise analysis for large dimensions

e Blum-Kalai-Wasserman (BKW) Algorithm

= Asymptotic complexity well understood

o 2°(&7) for LPN
o 229 for LWE
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o Lattice reduction algorithms (LLL, BKZ, ...)
= No precise analysis for large dimensions

e Blum-Kalai-Wasserman (BKW) Algorithm
= Asymptotic complexity well understood
o 2°(&7) for LPN
o 20 for LWE
= Precise algorithmic analysis

e LPN [Blum et al., 2003], [Levieil and Fouque, 2006]
[Fossorier et al., 2006], [Bernstein and Lange, 2012]
[Guo et al., 2014], [Bogos et al., 2015]

o LWE [Albrecht et al., 2013, 2014]
o LWR
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LWE Definition

Definition (LWE Oracle)

Let k, g be positive integers. A Learning with Errors (LWE) oracle T . for
a hidden vector s € Zg and a probability distribution x over Zg is an
oracle returning

U
a<—Z5, (a,s)+v | ,
~—

©

where v <+ .
o
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LWE Definition

Definition (LWE Oracle)

Let k, g be positive integers. A Learning with Errors (LWE) oracle T . for
a hidden vector s € Zg and a probability distribution x over Zg is an
oracle returning

U
a<—Z5, (a,s)+v | ,
~—

©

where v <+ .

Definition (Search-LWE)

The Search-LWE problem is the problem of recovering the hidden secret s
given n queries (al), cU)) € Zk x Zg obtained from M ...
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Error Distribution(s)

Two main Gaussian error distributions appear in the literature

Definition (Rounded Gaussian Distribution
[Regev, 2009; Albrecht et al., 2013])

o Sample x ~ N (0, 02).
@ Output [x] (mod q) € | -2, 1].

Definition (Discrete Gaussian Distribution

[Regev, 2009; Brakerski et al., 2013])

q q

Pr[x] o< exp(—x?/(262)), forx €] — 575l
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Two main Gaussian error distributions appear in the literature

Definition (Rounded Gaussian Distribution
[Regev, 2009; Albrecht et al., 2013])

o Sample x ~ N (0, 02).

@ Output [x] (mod q) € | -2, 1].

Definition (Discrete Gaussian Distribution

[Regev, 2009; Brakerski et al., 2013])

q q

Pr[x] o< exp(—x?/(262)), forx €] — 575l

= Our results apply to both distributions for practical parameters
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Error Distribution(s)

Definition (Discrete Gaussian Distribution

[Regev, 2009; Brakerski et al., 2013])

q q

Pr[x] o< exp(—x?/(262)), forx €] — 575l

= Our results apply to both distributions for practical parameters
= We focus on the discrete Gaussian distribution for this talk
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The BKW Algorithm

Reduction Phase ([Blum et al., 2003; Albrecht et al., 2013])

@ In each oracle query, split a into r blocks of b elements (r - b = k)

([al ab] [3b+1 azb] [a(,_l)b+1 a,b] ]c)
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The BKW Algorithm

Reduction Phase ([Blum et al., 2003; Albrecht et al., 2013])

@ In each oracle query, split a into r blocks of b elements (r - b = k)

([al ab] [3b+1 azb] [a(,_l)b+1 a,b] ]c)

@ Partition queries according to values of first block

[ 00 1 ][ 2 -1 471720111
[ 00 1] [ =2 0 1175 1-]|?2
[ 00 -1 ] [ 3 3 4171 0 4 217]|°o
[0 0 2 ][ 0 2 07T -1 4 3 ][5
[ o0 2 ] [ -1 1-3]7] 5 5 1] 3
[ 00 2 ] [ 2 5 511 1 3 -4 ]| 2

BKW reduction in Z3;, r =3,b =3
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The BKW Algorithm

Reduction Phase ([Blum et al., 2003; Albrecht et al., 2013])

@ In each oracle query, split a into r blocks of b elements (r - b = k)

([al ab] [3b+1 azb] [a(,_l)b+1 a,b] ]c)

@ Partition queries according to values of first block, and combine

1 00 1] [ 2 -1 41720111
+<doo1][_2o1][_51_1]2
00 1] [ 3 3411 0 4 2170
T 00 2] [ 0 2 011 4 3 ][5
Y 00 2] -1 1371715 5 1] 3
00 2 ][ 2 5571 1 3 -41]]| 2

BKW reduction in Z3;, r =3,b =3
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The BKW Algorithm

Reduction Phase ([Blum et al., 2003; Albrecht et al., 2013])

@ In each oracle query, split a into r blocks of b elements (r - b = k)

([al ab] [3b+1 azb] [a(,_l)b+1 a,b] ]c)

@ Partition queries according to values of first block, and combine

1 00 1] 2-1 471720 11]]1
+<dooo][4-13][3_12]—3
00 0] [ 5 2 0] 2 4 3] 1
T 00 2] [ 0 2 011 4 3 ][5
Y00 0] 1 3 3] 42 2 |2
00 0] [ 2 4511 0-4 4171 -3

BKW reduction in Z3;, r =3,b =3
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The BKW Algorithm

Reduction Phase ([Blum et al., 2003; Albrecht et al., 2013])

@ In each oracle query, split a into r blocks of b elements (r - b = k)

([al ab] [3b+1 azb] [a(,_l)b+1 a,b] ]c)

@ Delete the leftover query in each partition

[UU?][ 14}[—111]*1
[ 00 0] [ 4 -1 3717 31 21]|3
[ 00 0] [ 5 2 0] [ =2 4 31]|-1
—or—o——F 462 o 3+ 3t
[ 00 0] [ -1 3 37171 4 2 2 ]|-2
[ 00 0] [ 2 45111 0 -4 41|23

BKW reduction in Z3;, r =3,b =3
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The BKW Algorithm

Reduction Phase ([Blum et al., 2003; Albrecht et al., 2013])

@ In each oracle query, split a into r blocks of b elements (r - b = k)

([al ab] [3b+1 azb] [a(,_l)b+1 a,b] ]c)

o lterate r — 1 times until a single non-zero block remains

[ 00 0] [ 0 o0 071]T -1 43171
[ 00 0] [ 0 0 071]T [ 2 0 - ]|-2
[0 0 0] [ 0 0 0] [ 1 4 0] 1
[ 00 0] [ 0 0 07]T[=-1-1 37]]|o0

BKW reduction in Z3;, r =3,b =3
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The BKW Algorithm

Solving Phase ([Albrecht et al., 2013])

@ Apply a last reduction to obtain queries with 1 non-zero element
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The BKW Algorithm

Solving Phase ([Albrecht et al., 2013])

@ Apply a last reduction to obtain queries with 1 non-zero element

@ The noise now corresponds to the sum of 2" variables drawn from y

C/—<a,,$>:l/1:i:112:|:---:|:l/2r
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The BKW Algorithm

Solving Phase ([Albrecht et al., 2013])

@ Apply a last reduction to obtain queries with 1 non-zero element

@ The noise now corresponds to the sum of 2" variables drawn from y
c’—(a’,s> 21/1:i:I/2:|:---:|:I/2r

@ Guess 1 element of the secret s by maximum-likelihood estimation

e Let m denote the number of remaining queries
o Exhaustive search through all g possibilities — ©(m - q)

Florian Tramer (EPFL) Better Algorithms for LWE and LWR Eurocrypt 2015 7 /19



The BKW Algorithm (Discrete Transforms)

Alternative Solving Phase

@ Guess a block of b elements of s at once by computing a DFT
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The BKW Algorithm (Discrete Transforms)

Alternative Solving Phase

@ Guess a block of b elements of s at once by computing a DFT

@ ldea proposed by Levieil and Fouque for LPN [Levieil and Fouque, 2006]
e Significant improvement over original BKW [Blum et al., 2003]
o Still asymptotically 29(7)
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The BKW Algorithm (Discrete Transforms)

Alternative Solving Phase

@ Guess a block of b elements of s at once by computing a DFT

@ ldea proposed by Levieil and Fouque for LPN [Levieil and Fouque, 2006]
e Significant improvement over original BKW [Blum et al., 2003]
o Still asymptotically 29(7)

©(m - q) for MLE

e One reduction less — lower noise

e Can be generalized for LWE (and LWR) EOUld be better than}
o FFT algorithms — ©(m’ 4+ q” - b -log q)
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Our Results

@ We improve the results of [Albrecht et al., 2013] by applying a DFT in
the solving phase
o Remove heuristic assumptions about sums of rounded Gaussians
o Conceptually simpler analysis — closed form expression for time
complexity

o First algorithmic cryptanalysis of LWR using similar techniques
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Our Solving Phase

o After (r-1) reduction rounds, we have m queries (a("), c()) remaining
= View the al!) as elements in Z}
= Lets’ € Zg be the secret block to recover.
= Let 0, == exp(27i/q)

@ Define m 0
F(x) = oo by YxEZ
j=1
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Our Solving Phase

o After (r-1) reduction rounds, we have m queries (a("), c()) remaining
= View the al!) as elements in Z}

= Lets’ € Zg be the secret block to recover.

= Let 0, == exp(27i/q)

@ Define m 0

F(x) = oo by YxEZ
j=1

@ The DFT of f is

Fla) =3 65~ |y e 7t
=1

@ In particular

f(s') = Gg(yj'li'"i”j,zf—l)
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DFT Distinguisher

For the correct secret block s’, we have

m

o[]S [ 2
j=1

m 2r—1

ZE[COS (VJ 1) + i -sin (2:;1/1-’1) ]

j=1
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DFT Distinguisher

Lemma

For q an odd integer, let X ~ x where x is a discrete Gaussian over Zq
with parameter o. Let Y ~ 271X /q. Then

222

Elcos(Y)] > 1 — and E[sin(Y)] =0.

Proof: Follows from Lemma 1.3 in [Banaszczyk, 1993].

Florian Tramer (EPFL) Better Algorithms for LWE and LWR Eurocrypt 2015 1 /19



DFT Distinguisher

For the correct secret block s’, we have

m

VJ l:l: =7 2r—1)
[fn] = 3 v |
j=1
m 2 1
ZE[COS (Vj’l) + i -sin (VJJ) ]
— q
Jj=1 -~
>1-2n202/q 0
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DFT Distinguisher

For the correct secret block s’, we have

[ } sz;JE[ (a0 1)]
éuz[cos (w 1) Tisin (””Hz
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DFT Distinguisher

For the correct secret block s’, we have

m

]E[ } ;E[ (ZRERE7pe 1)]
JZEE[ (Zvia) +ivsin (20 r

For a fixed o # s’, we have

E {f(a)} =0.
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DFT Distinguisher

Example graph of Re(f), for small parameters adapted from [Regev, 2009]:

q=17,0=085r=6, b =4, m=212
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DFT Distinguisher

e Algorithm: output argmax Re(f(cx))
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DFT Distinguisher

e Algorithm: output argmax Re(f(cx))

o Failure Probability:

Prlargnax Re(f(e)) # 5] < q” - exp (‘Z

\
N
[
I
N
Q|
IS
N
~_
N
N——

= Follows from Hoeffding's inequality and a union bound

Florian Tramer (EPFL) Better Algorithms for LWE and LWR Eurocrypt 2015 13 /19



LWE Results

Regev's cryptosystem [Regev, 2009] with success probability 0.99.

q = nextPrime(k?), o =0 ( 9 >

Vklog? k
k q  log(#ops) log(#ops)
[Albrecht et al., 2013]

64 4099 52.62 54.85
80 6421 63.23 65.78
96 9221 73.72 76.75
112 12547 85.86 87.72
128 16411 95.03 98.67
160 25601 115.87 120.43
224 50177 160.34 163.76
256 65537 178.74 185.35
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Learning With Roundings

@ Deterministic variant of LWE

@ Hardness reductions from LWE  [Banerjee et al., 2012; Alwen et al., 2013]
= Exponential parameters or bound on oracle samples

@ Many applications for PRFs [Banerjee et al., 2012; Boneh et al., 2013]
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LWR Definition

Definition (LWR Oracle)

Let k and g > p > 2 be positive integers. A Learning with

Rounding (LWR) oracle A, for a hidden vector s € Z¥, s # 0 is an oracle
returning

= For fixed a, s the ‘errors’ introduced by the oracle are deterministic

Definition (Search-LWR)

The Search-LWR problem is the problem of recovering the hidden secret s
given n queries (a¥), c()) e ZS X Zp obtained from As .
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Algorithm Analysis (sketch)

@ Same algorithm as for LWE but the analysis is more tricky
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Algorithm Analysis (sketch)

@ Same algorithm as for LWE but the analysis is more tricky

@ Analysis of the characteristic function of the rounding errors

E [e"tg} forteR, &= <Z> (a,s) — c
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Algorithm Analysis (sketch)

@ Same algorithm as for LWE but the analysis is more tricky
@ Analysis of the characteristic function of the rounding errors
ite _(P
E[e } forte R, { = <> (a,s) —c
q

o In LWR, a and £ are not independent!
o Since al) I al) we still have () I ¢U) for j # j
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Algorithm Analysis (sketch)

@ Same algorithm as for LWE but the analysis is more tricky
@ Analysis of the characteristic function of the rounding errors
ite _(P
E[e } forte R, { = <> (a,s) —c
q

o In LWR, a and £ are not independent!
o Since al) I al) we still have () I ¢U) for j # j

@ For g prime and p > 4, we get
o A lower bound for E [f(s’)}

o An upper bound for E {fe(a)} for a fixed o # s’
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~

Example graph of Re(f) for small parameters adapted from
[Regev, 2009] and [Alwen et al., 2013]

g=17,p=5,r=6b=4 m=21?

60O

E V(s’)} > 488
400

300
200

100

E [f(a)} < 0.0003

—200

—300
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Open Problems

o Find a better algorithm for LWR that leverages the fact that errors
are deterministic

@ Prove that LWR with polynomial parameters and unlimited oracle
samples is hard

@ Analyze the heuristic independence-assumptions used in various
works on BKW for LPN and LWE
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