
On Computing Nearest Neighbors with
Applications to Decoding of Binary Linear Codes

Eurocrypt 2015, Sofia

Alexander May, Ilya Ozerov
Chair for Cryptology and IT Security
Horst Görtz Institute, Ruhr University Bochum

Outline

1. Algorithm for the Nearest Neighbor Problem
2. Application to Decoding of Random Binary Linear Codes

◦ Stern (1989)
◦ BJMM (2012)

Nearest Neighbor Problem

In our work we discuss the (m, `,∆) Nearest Neighbor Problem in F2:

Given two lists L,R ⊂ Fm
2 of ` uniform and pairwise independent

vectors, find all (u, v) ∈ L× R with a Hamming distance of ∆.

m︷ ︸︸ ︷ m︷ ︸︸ ︷
`



`
u

v∆

Interesting case: ` = 2λm

Naive approach: Õ(`2)

• Θ̃(`2), if ∆ = m
2

• but Õ(`), if ∆ = 0
• subquadratic, if 0 < ∆ < m

2 ?

Nearest Neighbor Problem

In our work we discuss the (m, `,∆) Nearest Neighbor Problem in F2:

Given two lists L,R ⊂ Fm
2 of ` uniform and pairwise independent

vectors, find all (u, v) ∈ L× R with a Hamming distance of ∆.

m︷ ︸︸ ︷ m︷ ︸︸ ︷
`



`
u

v∆

Interesting case: ` = 2λm

Naive approach: Õ(`2)

• Θ̃(`2), if ∆ = m
2

• but Õ(`), if ∆ = 0
• subquadratic, if 0 < ∆ < m

2 ?

Nearest Neighbor Problem

In our work we discuss the (m, `,∆) Nearest Neighbor Problem in F2:

Given two lists L,R ⊂ Fm
2 of ` uniform and pairwise independent

vectors, find all (u, v) ∈ L× R with a Hamming distance of ∆.

m︷ ︸︸ ︷ m︷ ︸︸ ︷
`



`
u

v∆

Interesting case: ` = 2λm

Naive approach: Õ(`2)

• Θ̃(`2), if ∆ = m
2

• but Õ(`), if ∆ = 0
• subquadratic, if 0 < ∆ < m

2 ?

Nearest Neighbor Problem

In our work we discuss the (m, `,∆) Nearest Neighbor Problem in F2:

Given two lists L,R ⊂ Fm
2 of ` uniform and pairwise independent

vectors, find all (u, v) ∈ L× R with a Hamming distance of ∆.

m︷ ︸︸ ︷ m︷ ︸︸ ︷
`



`
u

v∆

Interesting case: ` = 2λm

Naive approach: Õ(`2)

• Θ̃(`2), if ∆ = m
2

• but Õ(`), if ∆ = 0

• subquadratic, if 0 < ∆ < m
2 ?

Nearest Neighbor Problem

In our work we discuss the (m, `,∆) Nearest Neighbor Problem in F2:

Given two lists L,R ⊂ Fm
2 of ` uniform and pairwise independent

vectors, find all (u, v) ∈ L× R with a Hamming distance of ∆.

m︷ ︸︸ ︷ m︷ ︸︸ ︷
`



`
u

v∆

Interesting case: ` = 2λm

Naive approach: Õ(`2)

• Θ̃(`2), if ∆ = m
2

• but Õ(`), if ∆ = 0
• subquadratic, if 0 < ∆ < m

2 ?

Previous Results

There are mainly two previous results solving the problem:

• Valiant (2012): Õ(`1.8) with fast matrix multiplication:
◦ exponent stays at 1.8 even for small values of ∆.

• Dubiner (2010): Õ(`
1

1−∆
m) with “bucketing codes”:

◦ pros:
I best known result for small ∆.
I interpolates between the special cases ∆ = 0 and ∆ = m

2 .
◦ cons:

I only holds for ` that are sub-exponential in m.
I so far no result for the case of ` = 2λm.

Previous Results

There are mainly two previous results solving the problem:

• Valiant (2012): Õ(`1.8) with fast matrix multiplication:
◦ exponent stays at 1.8 even for small values of ∆.

• Dubiner (2010): Õ(`
1

1−∆
m) with “bucketing codes”:

◦ pros:
I best known result for small ∆.
I interpolates between the special cases ∆ = 0 and ∆ = m

2 .

◦ cons:
I only holds for ` that are sub-exponential in m.
I so far no result for the case of ` = 2λm.

Previous Results

There are mainly two previous results solving the problem:

• Valiant (2012): Õ(`1.8) with fast matrix multiplication:
◦ exponent stays at 1.8 even for small values of ∆.

• Dubiner (2010): Õ(`
1

1−∆
m) with “bucketing codes”:

◦ pros:
I best known result for small ∆.
I interpolates between the special cases ∆ = 0 and ∆ = m

2 .
◦ cons:

I only holds for ` that are sub-exponential in m.
I so far no result for the case of ` = 2λm.

Our Result

We present an Algorithmic Tool that
• gives a conceptually easy algorithm,
• is build for list sizes ` that are exponential in m,
• implies a better decoding algorithm for linear codes.

∆
m

complexity exponent

0.1 0.2 0.3 0.4 0.5

1

1.5

2 ` = 2m/5

sub-exponential `

Our Result

We present an Algorithmic Tool that
• gives a conceptually easy algorithm,
• is build for list sizes ` that are exponential in m,
• implies a better decoding algorithm for linear codes.

∆
m

complexity exponent

0.1 0.2 0.3 0.4 0.5

1

1.5

2 ` = 2m/5

sub-exponential `

High Level Idea

m︷ ︸︸ ︷ m︷ ︸︸ ︷
`



`
u

v∆

m︷ ︸︸ ︷
...

m︷ ︸︸ ︷
... · · ·

m︷ ︸︸ ︷
...

m︷ ︸︸ ︷
...

m︷ ︸︸ ︷
u

m︷ ︸︸ ︷
v∆

•

• Algorithm creates exponentially many easy copies of the problem.
◦ by reducing the number of elements, individually in L and R.

• It guarantees that “distance ∆ pairs” are in one of these copies.

High Level Idea

m︷ ︸︸ ︷ m︷ ︸︸ ︷
`



`
u

v∆

m︷ ︸︸ ︷
...

m︷ ︸︸ ︷
... · · ·

m︷ ︸︸ ︷
...

m︷ ︸︸ ︷
...

m︷ ︸︸ ︷
u

m︷ ︸︸ ︷
v∆

•

• Algorithm creates exponentially many easy copies of the problem.
◦ by reducing the number of elements, individually in L and R.

• It guarantees that “distance ∆ pairs” are in one of these copies.

Nearest Neighbor Algorithm

Input: L, R, m, `,∆

Output: All (u, v) ∈ L× R with HammingDistance(u, v) = ∆

1: choose optimized parameters r and w
2: repeat r times:
A: choose a uniformly random partition of the columns {1, . . . ,m}
B: consider all elements of L,R with weight w on these columns
C: brute-force all these pairs and output those with distance ∆

Example: ∆ = 2

Problem: find all pairs with distance 2.

m︷ ︸︸ ︷ m︷ ︸︸ ︷

`





`

(00110110)

(11010010)

(00110110)

(00011110)

(00011101)

(00110101)

(11001010)

(00110101)

(10101010)

(01010101)

(10101001)

(10000111)

(01011001)

(00011011)

(01010011)

(10000111)

(00011011)

(01101100)

(00101011)

(10110010)

2

Example: ∆ = 2

A: choose a uniformly random partition of the columns {1, . . . ,m}

m︷ ︸︸ ︷ m︷ ︸︸ ︷

`





`

(00110110)

(11010010)

(00110110)

(00011110)

(00011101)

(00110101)

(11001010)

(00110101)

(10101010)

(01010101)

(10101001)

(10000111)

(01011001)

(00011011)

(01010011)

(10000111)

(00011011)

(01101100)

(00101011)

(10110010)

Example: ∆ = 2

B: consider all elements L,R with weight w = 1 on these columns

m︷ ︸︸ ︷ m︷ ︸︸ ︷

`





`

(00110110)

(11010010)

(00110110)

(00011110)

(00011101)

(00110101)

(11001010)

(00110101)

(10101010)

(01010101)

(10101001)

(10000111)

(01011001)

(00011011)

(01010011)

(10000111)

(00011011)

(01101100)

(00101011)

(10110010)

Example: ∆ = 2

C: brute-force all these pairs and output those with distance ∆ = 2

m︷ ︸︸ ︷ m︷ ︸︸ ︷

`





`

(00110110)

(11010010)

(00110110)

(00011110)

(00011101)

(00110101)

(11001010)

(00110101)

(10101010)

(01010101)

(10101001)

(10000111)

(01011001)

(00011011)

(01010011)

(10000111)

(00011011)

(01101100)

(00101011)

(10110010)

[3]

[2]

[3]

[2]

[2]

[3]

〈1〉

[3]

[2]

[2]

[2]

[2]

[2]

[3]

[3]

[2]

[3]

〈1〉

[3]

[3]

Example: ∆ = 2

In most steps we won’t find a pair with distance 2. Repeat!

m︷ ︸︸ ︷ m︷ ︸︸ ︷

(11001010)

(01101100)

4 6= 2

Example: ∆ = 2

What is a ‘good’ partition? If both vectors with ∆ = 2 have weight w .

m︷ ︸︸ ︷ m︷ ︸︸ ︷

`





`

(00110110)

(11010010)

(00110110)

(00011110)

(00011101)

(00110101)

(11001010)

(00110101)

(10101010)

(01010101)

(10101001)

(10000111)

(01011001)

(00011011)

(01010011)

(10000111)

(00011011)

(01101100)

(00101011)

(10110010)

〈1〉

[2]

〈1〉

[2]

[3]

[2]

[2]

[2]

〈1〉

[3]

[2]

〈1〉

[4]

[3]

[3]

〈1〉

[3]

[2]

[2]

〈1〉

Example: ∆ = 2

In this case pairs with distance 2 ‘survive’.

m︷ ︸︸ ︷ m︷ ︸︸ ︷
(00110110)

(00110110)

(10101010)

(10000111)

(10000111)

(10110010)

2

2

2

Nearest Neighbor Algorithm

Input: L, R, m, `,∆

Output: All (u, v) ∈ L× R with HammingDistance(u, v) = ∆

1: choose optimized parameters r and w
2: repeat r times:
A: choose a uniformly random partition of the columns {1, . . . ,m}
B: consider all elements of L,R with weight w on these columns
C: brute-force all these pairs and output those with distance ∆

Choice of weight w and repetitions r

• w controls how many vectors ‘survive’ the filtering
• brute-force compares each ‘survivor’ of L with each of R

=⇒ w(m, `) is chosen such that expected Θ(1) vectors ‘survive’

• u, v with dist(u, v) = ∆ have to ’survive’ in at least one repetition

=⇒ choice of r(m,∆,w) guarantees it with overwhelming probability

Choice of weight w and repetitions r

• w controls how many vectors ‘survive’ the filtering
• brute-force compares each ‘survivor’ of L with each of R

=⇒ w(m, `) is chosen such that expected Θ(1) vectors ‘survive’

• u, v with dist(u, v) = ∆ have to ’survive’ in at least one repetition

=⇒ choice of r(m,∆,w) guarantees it with overwhelming probability

Time Complexity

• Steps A (sampling) and C (brute-force) are easy.
• But how do we compute the list of ‘weight w vectors’ in step B?

◦ Traversing the whole input list would be worse than brute-force!
• Instead: tree based algorithm, decreasing list sizes on each level.

◦ This makes our algorithm run in time Õ(r).
• Unfortunately, it introduces a polynomial overhead of mt .

◦ Open Problem: Is it possible to get rid of this polynomial?

Application: Syndrome Decoding

Let H be a parity check matrix of a random binary linear [n, k , d] code.

Decoding Problem: find error e ∈ Fn
2, weight(e) = d

2 s.t. H · e = s.

Decoding Theorem

Our decoding algorithm solves the Decoding Problem in 20.0473n.

Application: Syndrome Decoding

Let H be a parity check matrix of a random binary linear [n, k , d] code.

Decoding Problem: find error e ∈ Fn
2, weight(e) = d

2 s.t. H · e = s.

Decoding Theorem

Our decoding algorithm solves the Decoding Problem in 20.0473n.

Overview

20.0473n

20.0494n

20.0550n

20.0557n 20.0576n

Main Decoding Theorem

BJMM (2012)

Basic Decoding Theorem

Stern (1989) Prange (1962)

Previous Results

Decoding Problem: find error e ∈ Fn
2, weight(e) = d

2 s.t. H · e = s.

• Prange (1962) uses a brute-force approach:
◦ guess a small part of e that contains all ones
◦ then use linear algebra to efficiently compute that part

• Stern (1989) generalizes to a meet-in-the-middle approach:
◦ search for exact collisions in e
◦ use linear algebra to check if the weight matches

Our approach: search directly for approximate collisions in e

Previous Results

Decoding Problem: find error e ∈ Fn
2, weight(e) = d

2 s.t. H · e = s.

• Prange (1962) uses a brute-force approach:
◦ guess a small part of e that contains all ones
◦ then use linear algebra to efficiently compute that part

• Stern (1989) generalizes to a meet-in-the-middle approach:
◦ search for exact collisions in e
◦ use linear algebra to check if the weight matches

Our approach: search directly for approximate collisions in e

Previous Results

Decoding Problem: find error e ∈ Fn
2, weight(e) = d

2 s.t. H · e = s.

• Prange (1962) uses a brute-force approach:
◦ guess a small part of e that contains all ones
◦ then use linear algebra to efficiently compute that part

• Stern (1989) generalizes to a meet-in-the-middle approach:
◦ search for exact collisions in e
◦ use linear algebra to check if the weight matches

Our approach: search directly for approximate collisions in e

Our Decoding Algorithm

=

weight d
2︷ ︸︸ ︷

e

H s

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).

Our Decoding Algorithm

=

weight d
2︷ ︸︸ ︷

e1 e2 e3

P1 P2 Q s

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q−1, define Ai := Q−1 ·Pi and t := Q−1 ·s.

Our Decoding Algorithm

=

weight d
2︷ ︸︸ ︷

e1 e2 e3

A1 A2 I t

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q−1, define Ai := Q−1 ·Pi and t := Q−1 ·s.

◦ Hope that the error vector splits in weights p
2 ,

p
2 , and

d
2 − p.

Our Decoding Algorithm

=

weight p
2︷ ︸︸ ︷ weight p

2︷ ︸︸ ︷ weight d
2−p︷ ︸︸ ︷

e1 e2 e3

A1 A2 I t

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q−1, define Ai := Q−1 ·Pi and t := Q−1 ·s.

◦ Hope that the error vector splits in weights p
2 ,

p
2 , and

d
2 − p.

◦ Move the A2 · e2 part on the other side of the equation.

Our Decoding Algorithm

= −+

weight p
2︷ ︸︸ ︷ weight p

2︷ ︸︸ ︷weight d
2−p︷ ︸︸ ︷

e1 e2e3

A1 A2I t

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q−1, define Ai := Q−1 ·Pi and t := Q−1 ·s.

◦ Hope that the error vector splits in weights p
2 ,

p
2 , and

d
2 − p.

◦ Move the A2 · e2 part on the other side of the equation.
◦ Since e3 is multiplied by I, both sides are approximately the same.

Our Decoding Algorithm

≈ d
2−p −

weight p
2︷ ︸︸ ︷ weight p

2︷ ︸︸ ︷
e1 e2

A1 A2
t

1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q−1, define Ai := Q−1 ·Pi and t := Q−1 ·s.

◦ Hope that the error vector splits in weights p
2 ,

p
2 , and

d
2 − p.

◦ Move the A2 · e2 part on the other side of the equation.
◦ Since e3 is multiplied by I, both sides are approximately the same.

3. Solve the Nearest Neighbor Problem with ∆ = d
2 − p.

Nearest Neighbor Problem with ∆ = d
2 − p

A1 · e1 ≈ t− A2 · e2

n−k︷ ︸︸ ︷ n−k︷ ︸︸ ︷

(k/2
p/2

)





(k/2
p/2

)

A1 · (00011)

A1 · (00101)

A1 · (01001)

A1 · (10001)

A1 · (10010)

A1 · (01010)

A1 · (00110)

A1 · (01100)

A1 · (10100)

A1 · (11000)

t− A2 · (00011)

t− A2 · (00101)

t− A2 · (01001)

t− A2 · (10001)

t− A2 · (10010)

t− A2 · (01010)

t− A2 · (00110)

t− A2 · (01100)

t− A2 · (10100)

t− A2 · (11000)

Nearest Neighbor Problem with ∆ = d
2 − p

A1 · e1 ≈ t− A2 · e2

n−k︷ ︸︸ ︷ n−k︷ ︸︸ ︷

(k/2
p/2

)





(k/2
p/2

)

A1 · (00011)

A1 · (00101)

A1 · (01001)

A1 · (10001)

A1 · (10010)

A1 · (01010)

A1 · (00110)

A1 · (01100)

A1 · (10100)

A1 · (11000)

t− A2 · (00011)

t− A2 · (00101)

t− A2 · (01001)

t− A2 · (10001)

t− A2 · (10010)

t− A2 · (01010)

t− A2 · (00110)

t− A2 · (01100)

t− A2 · (10100)

t− A2 · (11000)

∆

Conclusion

• Algorithm for finding close vectors in large lists.
• Application: improved decoding exponent by 5%.
• Open Problems:

◦ Is it possible to get rid of the polynomial overhead?
◦ Are there more applications of the Nearest Neighbor algorithm?

Thanks for your attention!

Conclusion

• Algorithm for finding close vectors in large lists.
• Application: improved decoding exponent by 5%.
• Open Problems:

◦ Is it possible to get rid of the polynomial overhead?
◦ Are there more applications of the Nearest Neighbor algorithm?

Thanks for your attention!

