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Qutline

1. Algorithm for the Nearest Neighbor Problem

2. Application to Decoding of Random Binary Linear Codes

o Stern (1989)
o BJMM (2012)
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Nearest Neighbor Problem

In our work we discuss the (m, ¢, A) Nearest Neighbor Problem in Fy:

Given two lists L, R C FJ' of £ uniform and pairwise independent
vectors, find all (u,v) € L x R with a Hamming distance of A.
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Interesting case: £ = 2™
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Nearest Neighbor Problem

In our work we discuss the (m, ¢, A) Nearest Neighbor Problem in Fy:

Given two lists L, R C FJ' of £ uniform and pairwise independent
vectors, find all (u,v) € L x R with a Hamming distance of A.
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Naive approach: O(¢?)
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Interesting case: £ = 2™
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Nearest Neighbor Problem

In our work we discuss the (m, ¢, A) Nearest Neighbor Problem in Fy:

Given two lists L, R C FJ' of £ uniform and pairwise independent
vectors, find all (u,v) € L x R with a Hamming distance of A.

Naive approach O(1?)
/ o), ifA=12

Interesting case: £ = 2™
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Nearest Neighbor Problem

In our work we discuss the (m, ¢, A) Nearest Neighbor Problem in Fy:

Given two lists L, R C FJ' of £ uniform and pairwise independent
vectors, find all (u,v) € L x R with a Hamming distance of A.

Naive approach O(1?)
/ ), |f A= 7
. butO( ), if A=0

Interesting case: £ = 2™
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Nearest Neighbor Problem

In our work we discuss the (m, ¢, A) Nearest Neighbor Problem in Fy:

Given two lists L, R C FJ' of £ uniform and pairwise independent
vectors, find all (u,v) € L x R with a Hamming distance of A.

Naive approach O(1?)
/ (), fA=3F
. butO( ), if A=0
o subquadratic, if 0 < A < 37

Interesting case: £ = 2™
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There are mainly two previous results solving the problem:

« Valiant (2012): O(¢*8) with fast matrix multiplication:
o exponent stays at 1.8 even for small values of A.
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There are mainly two previous results solving the problem:

« Valiant (2012): O(¢*8) with fast matrix multiplication:
o exponent stays at 1.8 even for small values of A.

. 1
1-4

o Dubiner (2010): O(¢*~m ) with “bucketing codes™:
o pros:
» best known result for small A.
> interpolates between the special cases A =0 and A = 7.
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There are mainly two previous results solving the problem:

« Valiant (2012): O(¢*8) with fast matrix multiplication:
o exponent stays at 1.8 even for small values of A.

1
« Dubiner (2010): O(¢*~# ) with "bucketing codes':
o pros:
» best known result for small A.
> interpolates between the special cases A =0 and A = 7.

o cons:

» only holds for ¢ that are sub-exponential in m.
» so far no result for the case of £ = 2 ™.
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We present an Algorithmic Tool that
e gives a conceptually easy algorithm,
e is build for list sizes £ that are exponential in m,

e implies a better decoding algorithm for linear codes.
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Our Result o g

We present an Algorithmic Tool that
e gives a conceptually easy algorithm,
e is build for list sizes £ that are exponential in m,

e implies a better decoding algorithm for linear codes.

complexity exponent
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o Algorithm creates exponentially many easy copies of the problem.
o by reducing the number of elements, individually in L and R.

o It guarantees that “distance A pairs” are in one of these copies.
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o Algorithm creates exponentially many easy copies of the problem.
o by reducing the number of elements, individually in L and R.

o It guarantees that “distance A pairs” are in one of these copies.
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Nearest Neighbor Algorithm g

Input: L, R, m, ¢, A
Output: All (u,v) € L x R with HammingDistance(u,v) = A

1: choose optimized parameters r and w

2: repeat r times:
A: choose a uniformly random partition of the columns {1, ..., m}
B: consider all elements of L, R with weight w on these columns

C: brute-force all these pairs and output those with distance A
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Example: A =2

Problem: find all pairs with distance 2.

m m

—— —
(00110110) (10101001)
(11010010) (10000111)
(00110110) (01011001)
(00011110) (00011011)
(00011101) (01010011)
(00110101) (10000111)
(11001010) (00011011)
(00110101) (01101100)
(10101010) (00101011)
(01010101) (10110010)
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Example: A =2

A: choose a uniformly random partition of the columns {1,..., m}
f—’u /—/L
(00110110) (10101001)) )
(11010010) (10000111)
(00110110) (01011001)
(00011110) (00011011)
(00011101) (01010011)
(00110101) (10000111)
(11001010) (00011011)
(00110101) (01101100)
(10101010) (00101011)
(01010101) (10110010)
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B: consider all elements L, R with weight w = 1 on these columns
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C: brute-force all these pairs and output those with distance A =2
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Example: A =2
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In most steps we won't find a pair with distance 2. Repeat!

(11001010)

$\\\\ftzifi\\\9

(01101100)
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What is a ‘good’ partition? If both vectors with A = 2 have weight w.
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Example: A =2

In this case pairs with distance 2 ‘survive'.

m m

——— —_
(00110110) |5 - -
\o. - i|(10000111)
(00110110) 1 = \ 7

~|(10000111)

(10101010)| %

(10110010)
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Nearest Neighbor Algorithm g

Input: L, R, m, ¢, A
Output: All (u,v) € L x R with HammingDistance(u,v) = A

1: choose optimized parameters r and w

2: repeat r times:
A: choose a uniformly random partition of the columns {1, ..., m}
B: consider all elements of L, R with weight w on these columns

C: brute-force all these pairs and output those with distance A
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o w controls how many vectors ‘survive' the filtering

o brute-force compares each ‘survivor’ of L with each of R

= w(m,{) is chosen such that expected ©(1) vectors ‘survive'
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o w controls how many vectors ‘survive' the filtering

o brute-force compares each ‘survivor’ of L with each of R

= w(m,{) is chosen such that expected ©(1) vectors ‘survive'

e u,v with dist(u,v) = A have to 'survive' in at least one repetition

= choice of r(m, A, w) guarantees it with overwhelming probability
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Time Complexity g

Steps A (sampling) and C (brute-force) are easy.
But how do we compute the list of ‘weight w vectors' in step B?
o Traversing the whole input list would be worse than brute-force!

Instead: tree based algorithm, decreasing list sizes on each level.
o This makes our algorithm run in time O(r).

o Unfortunately, it introduces a polynomial overhead of m?.

o Open Problem: Is it possible to get rid of this polynomial?
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Application: Syndrome Decoding

Let H be a parity check matrix of a random binary linear [n, k, d] code.

Decoding Problem: find error e € FJ, weight(e) = % st. H-e=s.
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Application: Syndrome Decoding

Let H be a parity check matrix of a random binary linear [n, k, d] code.

Decoding Problem: find error e € FJ, weight(e) = % st. H-e=s.

Decoding Theorem

Our decoding algorithm solves the Decoding Problem in 20-94737.
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Overview

BJMM (2012)
20.0494'1

hg1:

Horst Gortz Institut B
f0r T-Sicherheit B

Stern (1989) Prange (1962)
20.0557" 20.0576'1

Main Decoding Theorem
20.0473n

Basic Decoding Theorem
20.0550n



RUHR-UNIVERSITAT BOCHUM . M
h "

Previous Results

f0r T-Sicherheit B

Decoding Problem: find error e € F3, weight(e) = ¢ s.t. H-e =s.

o Prange (1962) uses a brute-force approach:

o guess a small part of e that contains all ones
o then use linear algebra to efficiently compute that part
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Decoding Problem: find error e € F3, weight(e) = ¢ s.t. H-e =s.

o Prange (1962) uses a brute-force approach:
o guess a small part of e that contains all ones
o then use linear algebra to efficiently compute that part
o Stern (1989) generalizes to a meet-in-the-middle approach:

o search for exact collisions in e
o use linear algebra to check if the weight matches
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Decoding Problem: find error e € F3, weight(e) = ¢ s.t. H-e =s.

o Prange (1962) uses a brute-force approach:

o guess a small part of e that contains all ones
o then use linear algebra to efficiently compute that part

o Stern (1989) generalizes to a meet-in-the-middle approach:

o search for exact collisions in e
o use linear algebra to check if the weight matches

Our approach: search directly for approximate collisions in e
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1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
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Our Decoding Algorithm

weight g
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1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q1 define A; = Q1. P;and t := Ql.s.
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Our Decoding Algorithm
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1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).

2. Multiply both sides by Q 1, define A; :=

Q*I-P- andt:=Ql.s.

o Hope that the error vector splits in weights 2, 2, and S —p.
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Our Decoding Algorithm

weight 2 weight 2 weight g—p
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1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q 1, define A; = Ql. P;and t .= Q1l.s.
o Hope that the error vector splits in weights £, £, and % —p.

o Move the A, - e, part on the other side of the equation.
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Our Decoding Algorithm

weight 2 weight %—p

L& | e
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weight 2

2
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1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q 1, define A; = Ql. P;and t := Q1l.s.

o Hope that the error vector splits in weights £, £, and % —p.

)

o Move the A, - e, part on the other side of the equation.
o Since e3 is multiplied by I, both sides are approximately the same.
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Our Decoding Algorithm

weight 2 weight 2
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1. Randomly permute the columns of H and obtain a matrix (P1|P2|Q).
2. Multiply both sides by Q 1, define A; ;= Q 1-P;and t := Q !-s.
o Hope that the error vector splits in weights 2, £, and % — p.

o Move the A; - ey part on the other side of the equation.
o Since e3 is multiplied by I, both sides are approximately the same.

3. Solve the Nearest Neighbor Problem with A = % —p.
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Nearest Neighbor Problem with A
Al-eg=t—As-e;
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Nearest Neighbor Problem with A

Al-eg=t—As-e;
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Conclusion

o Algorithm for finding close vectors in large lists.
o Application: improved decoding exponent by 5%.

e Open Problems:

o ls it possible to get rid of the polynomial overhead?
o Are there more applications of the Nearest Neighbor algorithm?
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o Algorithm for finding close vectors in large lists.

o Application: improved decoding exponent by 5%.
e Open Problems:

o ls it possible to get rid of the polynomial overhead?
o Are there more applications of the Nearest Neighbor algorithm?

Thanks for your attention!



