

Revocable Timed-Release Encryption

Dominique Unruh
University of Tartu

Dominique Unruh Eurocrypt 2014

Motivation

- Want to send a message
- Opens at a particular date
- No earlier opening!

Time Vaults

Required properties

- Can be decrypted in time t
- Cannot be opened in time (much) smaller t

Challenges:

- Very precise hardness assumptions
- Knowledge of adversary hardware
- Non-parallelisable
- Quantum secure

For this talk: Assume that's solved.

Another application

Using digital time vaults...

Revocable time vaults

- Physical time vaults have "revocability"
 - Before timeout, possible to "give back"
 - Recipient can keep time vault, but will be detected

- Digital time vaults:
 - Recipient can always keep copy
 - And continue decrypting the copy

No Cloning?

Example applications

Deposits: Put digital money in TRE. Hand it back upon return.

— Useful for fair MPC also?

<u>Data retention with verifiable deletion:</u> Keep user data for legally mandated time, provably delete afterwards.

<u>Unknown recipient encryption:</u> Send a message to unknown recipient. Recipient knows no-one else got it.

— More unexpected applications of revocable TRE?

Quantum Time Vaults

Revocation:

Naïve Proof

Recipient does not know B before time t

- \Rightarrow Can't copy msg before time t (no cloning)
- \Rightarrow Won't have msg after revocation
- ⇒ Secure

"Theorem": Without knowing B, impossible to transform $|msg\rangle_B$ into $|msg\rangle_B$, $|msg\rangle_B$

Naïve Proof – criticism

Perhaps "encrypted cloning" is possible?

Proof idea

Need to show: no "encrypted cloning"

- "Independence of msg": not T-time testable
- " $|msg\rangle_B$ " maximally entangled with environment: T-time testable!
 - \Rightarrow Unentangled with Enc($|msg\rangle_B$)

The big picture

Conclusions

- Revocable time vaults
 - Gap between quantum and classical crypto

- Useful building block in crypto protocols?
 - Unknown recipient encryption

 Technique: Giving back data → other applications?

Open questions

- Classical TRE schemes.
 - -H(H(H(H(...H(msg)...)))): encryption takes long
 - Rivest-Shamir-Wagner: not quantum secure
- Efficient reduction for revocable hiding TRE in standard model.

I thank for your attention

This research was supported by European Social Fund's **Doctoral Studies and** Internationalisation Programme DoRa