Efficient Non-Malleable Codes and Key-derivations against Poly-size Tampering Circuits

PRATYAY MUKHERJEE

(Aarhus University)

Joint work with

Sebastian Faust, Daniele Venturi and Daniel Wichs

EUROCRYPT 2014, COPENHAGEN

May 12, 2014

Two Parts

Part-1

Efficient Non-malleable Codes against Poly-size circuits

Part-2

Efficient Non-malleable **Key-derivation** against Poly-size circuits

Part-1 Efficient Non-malleable Codes against Poly-size circuits

Non-malleable Codes (Informally)

A modified codeword contains either original or unrelated message.

E.g. Can not flip one bit of encoded message by modifying the codeword.

The "Tampering Experiment"

> Consider the following experiment for some encoding scheme (ENC,DEC)

Goal:

Design encoding scheme (ENC,DEC) which is Non-malleable for an "interesting" class I

Tamperf(s)

Definition [DPW 10]:

```
A code (ENC, DEC) is non-malleable w.r.t. I #f ; f \in I and ; s_0, s_1 we have:
```

$$Tamper^{f}(s_0) \approx Tamper^{f}(s_1)$$

<u>Application: Tamper-Resilient Cryptography</u>

- Non-malleable codes are used to protect against key-tampering attacks.
- How ?
 - Encode the key using NMC.
 - The tampering adversary can not modify the encoded key to some related key.

<u>Limitation and Possibility</u>

<u>Limitation:</u> For any (**ENC, DEC**) there exists \mathbf{f}_{bad} which decodes \mathbf{C} , flips 1-bit and re-encodes to \mathbf{C}^* .

<u>Corollary-1:</u> It is impossible to construct encoding scheme which is non-malleable w.r.t. all functions I_{all} .

Corollary-2: It is impossible to construct efficient encoding scheme which is non-malleable w.r.t. all efficient functions I eff.

Question: How to restrict I?

Way-1: Restrict granularity

- Codeword consists of components which are independently tamperable.
- Example: Split-state tampering [DPW10, LL12, DK013, ADL13, CG13, FMNV13, ADK14]:

Way-2: Restrict complexity

The whole codeword is tamperable but only with functions that are not "too complicated".

Our Focus

Our Result

Corollary-2: It is impossible to construct efficient encoding scheme which is non-malleable w.r.t. all efficient functions I eff.

Main Result: "The next best thing"

For any fixed polynomial P, there exists an efficient non-malleable code for any family of functions $|I| \# | \le 2^{P}$.

Corollary-3

For any fixed polynomial P, there exists an efficient non-malleable code for all circuits of size $\leq P$.

Our Result

A similar result [CG 14]

But the encoding/decoding becomes "inefficient" in order to get negligible error

Main Result: "The next best thing"

For any fixed polynomial P, there exists an efficient non-malleable code for any family of functions $|I| \# | \le 2^{P}$.

Corollary-3

For any fixed polynomial P, there exists an efficient non-malleable code for all circuits of size < P.

Caveat: Our results hold in CRS model.

NMC in CRS model

- ☐ Fix some polynomial P
- We construct a family of efficient codes parameterized by CRS: (ENC_{CRS}, DEC_{CRS})
- ☐ We show that, w.h.p. over the random choice of CRS: (ENC_{CRS}, DEC_{CRS}) is an NMC w.r.t. all tampering circuits of size $\leq P$

Although P is chosen apriori, the tampering circuit can be chosen from the family of all circuits of size $\leq P$ adaptively.

The Construction Overview

The Construction Overview

Intuitions (outer encoding)

For every tampering function f there is a "small set" S_f such that if a tampered codeword is valid, then it is in S_f w.h.p.

We call this property Bounded Malleability which ensures that the tampered codeword does not contain "too much information" about the input codeword

The Construction Overview

Leakage-Resilient Code

<u>Def [DDV 10]:</u> A code (LRENC, LRDEC) is leakage-resilient w.r.t. J # ; g ∈ J and ; S: g(LRENC(s)) ≈ g(U)

Construction [DDV 10]: Let h' be a t-wise hash function. Then to encode s choose a random r and output $c = r \mid h'(r) \oplus s$

Our Inner Encoding

Analysis by [DDV 10] uses bound for extractor and therefore, $r \ge s$ (rate $\le 1/2$) even if the leakage ℓ is small

We show: The construction is an LRC as long as: $r > \ell$ even if r << s

We use the same construction but improved analysis to achieve optimal rate ≈ 1 .

Part-2 Efficient Non-malleable **Key-derivation (NMKD)**against Poly-size circuits

NMKD: A new primitive

NMKD guarantees that if $f(X) \neq X$ then $(Y, Y') \approx (U, Y')$

A dual of Non-Malleable Extractor

NMKD: Defintion

Real ϕ , f

Sample $x \leftarrow U$ If f(x) = xreturn $(\phi(x), \underline{same})$ Else return $(\phi(x), \phi(f(x)))$

Ideal^{ϕ , f}

Sample $x \leftarrow U$; $y \leftarrow U'$ If f(x) = xreturn (y, \underline{same}) Else return $(y, \phi(f(x)))$

<u>Definition:</u> A function ϕ is **NMKD** w.r.t. I #f ; $f \in I$ if above holds

Theorem (NMKD)

For any I of size $\leq 2^P$, a randomly chosen t-wise independent hash function is an NMKD w.h.p. as long as t > P

Conclusion

- The first construction of non-granular efficient Non-malleable code.
 - Our construction is information theoretic and achieves optimal rate.
- A new primitive Non-Malleable Key-derivation.
 - Application to construct Tamper-resilient Stream Cipher.
- Open:
 - New Application of NMKD.

Thank You!