Universally Composable Symbolic Analysis

- for Two-Party Protocols based on Homomorphic Encryption

> Morten Dahl and Ivan Damgård Aarhus University

Symbolic Analysis

- * Abstracts away details to facilitate analysis
 - * formal proof
 - * machine assistance
 - * large systems / real-world applications
- * Tool support
 - * type systems
 - * model checkers
 - * theorem provers

Popular Choices

- * Process algebra as basic model
 - * keys -> unguessable symbols
 - * encryption -> abstract term
 - * polynomial time -> fixed set of attacker rules
- * For instance
 - * terms: enc(m, ek, r) and ekfor(dk)
 - * rule: decl enc(m, ekfor(dk), r), dk) = m

Popular Choices

- * Classical primitives
 - * encryption
 - * signature
 - * hash functions
- Security defined by Prop(p)
 - weak secrecy: "key k not deducible"
 - * strong secrecy: " $P(k_1) \approx P(k_2)$ "

(not least for real-world soundness)

Motivation

- Modern primitives somewhat neglected
 - * homomorphic encryption
- * ... yet could imagine many applications (special-purpose MPC)
 - * Voting
 - * Auctions
 - * Secure Payments
- * Goal is tool-aided method for formal analysis

This Work

- Two-party secure function evaluation protocols
 - homomorphic encryption, commitments, NIZK-PoK
 - * Coin Flip, Oblivious Transfer, Triple generation
- * Applied Pi-calculus for the symbolic model
 - * well-known and suitable for ProVerif tool
 - * show real-world soundness w.r.t. standard UC model
- * So, for the class of protocols we consider:
 - symbolic security implies UC security

Contribution

- * Symbolic model of homomorphic encryption
 - * suitable for tool analysis
- Carry simulation/UC approach over to symbolic model
 - * security properties as ideal functionalities
 - * simulator extraction operations
- * Real-world soundness of homomorphic encryption
 - * for indistinguishability-based properties
 - * no fixed security property
- * Analysis of concrete OT protocol [DN008]

Symbolic UC

- * Natural to capture security for FSE by ideal functionalities
 - * input from environment
 - * corrupted players
 - * strong secrecy: "Sender(x_0, x_1) ≈ Sender(0, x_1)" ??
- * Usual benefits of UC
 - * compositional / modular analysis (including single session)
- * ... and little bonus "hybrid analysis"
 - * hide sub-protocols using unsupported primitives
- * See also: DKP09, BU13

Approach

- Consider class of protocols
 - * certain structure and black-box use of crypto
 - * captured by high level language
- Define two interpretations of systems:
 - * symbolic S(.) produces set of processes
 - * computational RW(.) produces set of ITMs
- * Theorem: indistinguishability carries over

How To Apply

- * Methodology
 - * express protocol and sub ideal functionalities
 - * express target ideal functionality and simulator
 - * show symbolic indistinguishability: S(rp) ≈ S(ip)
 - * apply soundness theorem: $RW(rp) \approx RW(ip)$
 - * also works for strong secrecy

Protocol Language

- * Used for expressing players, ideal functionalities, simulators
- * Commitments
 - * commit_T(...) --> [C, Proof_T]
- * Homomorphic encryption
 - * encrypt_T(..) --> [C, Proof_T]
 - * eval_e(...) --> [C, C_1, ..., P_1, ..., Proof_e]
 - * decrypt(..)
- * NIZK-Pok
 - * proof verification: verCommit_T(..), verEncrypt_T(..), verEval_e(..)
 - simulator witness extraction: extrCommit(..), extrEncrypt(..), ...

Soundness

- * Third "intermediate" interpretation: I(p)
 - * F_aux ideal crypto module
 - uniformly random handles instead of ciphertexts etc.
 - * global memory with restricted access
 - * fixed set of adversarial methods

* $l(p_1) \approx l(p_2) \Rightarrow RW(p_1) \approx RW(p_2)$

* approximately that F_aux is realised in RW(.)

* $S(p_1) \approx S(p_2) \Rightarrow I(p_1) \approx I(p_2)$

already quite similar

* Construct translator T

* use only adversarial methods

* hence $(p_1) \approx ((p_2) \approx T[(p_1)] \approx T[(p_2)]$

- Commitment scheme
 - * well-spread, comp. binding, and comp. hiding
- * Encryption scheme
 - * homomorphic for set of expressions
 - * well-spread, correct, history hiding, IND-CPA
- * NIZK-PoK scheme
 - * complete, comp. ZK, extractable

- * Network messages to adversary
 - * honest: use dummy values
 - corrupt: obtain correct values through F_aux
- * Network messages from adversary
 - * easy when both honest
 - * can extract most from proofs for a corrupt player
 - reject certain untranslatable messages

Already close to each other

- Intermediate attacker forced to use F_aux (for encrypting etc.)
 - * matchable by symbolic attacker with overwhelming prob.
 - * fails only if he guesses a random handle
- By symbolic indistinguishability he sees the same in every activation in both cases
 - symbolic indistinguishability has weaker scheduling guarantees
 - ... small condition on protocols

Thank You!

- Two-party secure function evaluation protocols
 - homomorphic encryption, commitments, NIZK-PoK
 - * Coin Flip, Oblivious Transfer, Triple generation
- * Applied Pi-calculus for the symbolic model
 - * well-known and suitable for ProVerif tool
 - * show real-world soundness w.r.t. standard UC model
- * So, for the class of protocols we consider:
 - * symbolic security implies UC security