On the Complexity of UC Commitments

Juan A. Garay

(Yahoo Labs)

Yuval Ishai

(Technion)

Ranjit Kumaresan

(Technion)

Hoeteck Wee

(ENS)

feasibility. [Canetti Fischlin 01, Canetti Lindell Ostrovsky Sahai 02]

- general assumptions, assuming a CRS
- impossible without set-up assumptions

feasibility. [Canetti Fischlin 01, Canetti Lindell Ostrovsky Sahai 02]

efficiency. [Damgård Nielsen 02, Damgård Groth 03, Lindell 11, Fischlin Libert Manulis 11,

Abdalla Ben-Hamouda Blazy Chevalier Pointcheval 13, Julta Roy 13]

– $M \in \{0,1\}^L$, send $\geq 5L$ bits and $O(L/\kappa)$ exponentiations

feasibility. [Canetti Fischlin 01, Canetti Lindell Ostrovsky Sahai 02]

efficiency. [Damgård Nielsen 02, Damgård Groth 03, Lindell 11, Fischlin Libert Manulis 11,

Abdalla Ben-Hamouda Blazy Chevalier Pointcheval 13, Julta Roy 13]

- $M \in \{0,1\}^L$, send $\geq 5L$ bits and $O(L/\kappa)$ exponentiations
- public-key operations are necessary [Damgård Groth 03]

stand-alone commitments.

- $L+3\kappa$ bits and only PRG [Blum 81, Naor 89]

feasibility. [Canetti Fischlin 01, Canetti Lindell Ostrovsky Sahai 02]

efficiency. [Damgård Nielsen 02, Damgård Groth 03, Lindell 11, Fischlin Libert Manulis 11,
Abdalla Ben-Hamouda Blazy Chevalier Pointcheval 13, Julta Roy 13]

- $-M \in \{0,1\}^L$, send $\geq 5L$ bits and $O(L/\kappa)$ exponentiations
- public-key operations are necessary [Damgård Groth 03]

(I) rate 1 i.e. (1+o(1))L bits?

feasibility. [Canetti Fischlin 01, Canetti Lindell Ostrovsky Sahai 02]

efficiency. [Damgård Nielsen 02, Damgård Groth 03, Lindell 11, Fischlin Libert Manulis 11,

Abdalla Ben-Hamouda Blazy Chevalier Pointcheval 13, Julta Roy 13]

- $-M \in \{0,1\}^L$, send $\geq 5L$ bits and $O(L/\kappa)$ exponentiations
- public-key operations are necessary [Damgård Groth 03]

- (1) rate 1 i.e. (1 + o(1))L bits?
- (2) $poly(\kappa)$ public-key operations?

commitment length extension

- 1 efficiency. rate $1\ \mathsf{UC}$ commitments
 - \checkmark (1+o(1))L bits in commit and reveal
 - $\checkmark~\tilde{O}(\kappa)$ OT calls, black-box use of a PRG

- f 1 efficiency. rate 1 UC commitments
 - \checkmark (1+o(1))L bits in commit and reveal
 - $\checkmark \ \ \tilde{O}(\kappa)$ OT calls, black-box use of a PRG

corollary #1. [Peikert Waters Vaikuntanathan 08, Choi Katz W Zhou 13]

- rate 1 UC commitments in CRS model
- $\tilde{O}(\kappa)$ exponentiations under DDH

- f 1 efficiency. rate 1 UC commitments
 - $\checkmark (1 + o(1))L$ bits in commit and reveal
 - $\checkmark \ \ \tilde{O}(\kappa)$ OT calls, black-box use of a PRG

corollary #2. [Choi Dachman-Soled Malkin W 09, Haitner Ishai Kushilevitz Lindell Petrank II]

- rate 1 UC commitment length extension
- black-box use of semi-honest OT

- f 1 efficiency. rate 1 UC commitments
 - \checkmark (1+o(1))L bits in commit and reveal
 - $\checkmark \ \ \tilde{O}(\kappa)$ OT calls, black-box use of a PRG

corollary #2. [Choi Dachman-Soled Malkin W 09, Haitner Ishai Kushilevitz Lindell Petrank II]

- rate 1 UC commitment length extension
- black-box use of semi-honest OT
- 2 necessity. UC commitment length extension implies OT

- f 1 efficiency. rate 1 UC commitments
 - \checkmark (1+o(1))L bits in commit and reveal
 - $\checkmark \ \ \tilde{O}(\kappa)$ OT calls, black-box use of a PRG

corollary #2. [Choi Dachman-Soled Malkin W 09, Haitner Ishai Kushilevitz Lindell Petrank II]

- rate 1 UC commitment length extension
- black-box use of semi-honest OT
- 2 necessity. UC commitment length extension implies OT

 $\delta\text{-Rabin OT}$

S

R

doesn't know if R learns x

[Brassard Crépeau Robert 86, Ishai Prabhakaran Sahai 08]

$$\binom{2}{1}$$
 OT $\times \log 1/\delta$

S

R

 $\delta\text{-Rabin}$ OT

 $\begin{array}{c|c} \hline S & \hline & \hline R \\ \hline \\ \textbf{commit} & C \leftarrow \text{share}(M) \longrightarrow \hline & \delta\text{-Rabin OT} \\ \hline \\ \textbf{reveal} & C \\ \hline \end{array}$

secret-sharing. rate $1+\delta$ over large field [Franklin Yung 92]

secret-sharing. rate $1+\delta$ over large field [Franklin Yung 92]

– any δ fraction are random \Rightarrow hiding

1 r

rate one commitments

secret-sharing. rate $1+\delta$ over large field [Franklin Yung 92]

- any δ fraction are random \Rightarrow hiding
- distance $\delta \Rightarrow$ binding

- communication: $(1+\delta)L$
- # OT calls: $\kappa \cdot 1/\delta$

- communication: $(1+\delta)L + \kappa^2 \cdot 1/\delta \log 1/\delta$
- # OT calls: $\kappa \cdot 1/\delta \log 1/\delta$

2 necessity of oblivious transfer

2 necessity of key agreement

key agreement scheme.

lacktriangle Alice commits to random M using Π and sends s

2

necessity of key agreement

key agreement scheme.

- \blacktriangleright Alice commits to random M using Π and sends s
- lacktriangle Bob gets M using commitment extractor

2

necessity of key agreement

key agreement scheme.

- ▶ Alice commits to random M using Π and sends s
- lacktriangle Bob gets M using commitment extractor

security against eavesdropper.

lacktriangledown equivocality implies ${
m H}(M\mid {
m transcript})=2\kappa$

2

necessity of key agreement

key agreement scheme.

- lacktriangle Alice commits to random M using Π and sends s
- lacktriangle Bob gets M using commitment extractor

security against eavesdropper.

- equivocality implies $\mathsf{H}(M \mid \mathsf{transcript}) = 2\kappa$
- ▶ $\mathsf{H}(M \mid \mathsf{transcript}, s) \ge \kappa$

this work. rate I UC commitments

length extension for UC commitments qualitatively different from stand-alone commitments and UC OT.

this work. rate I UC commitments

length extension for UC commitments qualitatively different from stand-alone commitments and UC OT.

open problems.

▶ $L + poly(\kappa, log L)$ bits?

this work. rate I UC commitments

▶ length extension for UC commitments qualitatively different from stand-alone commitments and UC OT.

open problems.

- ▶ $L + poly(\kappa, log L)$ bits?
- adaptive security?
 - non-committing encryption extension implies OT strengthens [Lindell Zarosim 13]

this work. rate I UC commitments

► length extension for UC commitments qualitatively different from stand-alone commitments and UC OT.

open problems.

- ▶ $L + poly(\kappa, log L)$ bits?
- adaptive security?
- ▶ rate I homomorphic UC commitments?
 - (c.f. [Damgård David Giacomelli Nielsen 14])

