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Setting

information-theoretic security

only static corruption

no fairness (i.e., adversarial party can abort after learning own output)

results hold with respect to UC as well as standalone security notions
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Simple primitives can be very powerful

Oblivious Transfer

g

OT

(b0, b1) c

ε bc

complete (= all-powerful)

Xq

[Kilian-88]
[Ishai-Prabhakaran-Sahai-08]

Xq
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Known completeness criteria

semi-honest malicious
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∗ except for noisy channels [Crépeau-Kilian-88, Crépeau-Morozov-Wolf-04]
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Kraschewski, Maji, Prabhakaran, Sahai Full Characterization of Completeness EUROCRYPT 2014 6 / 28



Known completeness criteria

semi-honest malicious

d
et

er
m

in
is

ti
c

symmetric [Kilian-91] [Kilian-91]

asymmetric [Beimel-Malkin-Micali-99] [Kilian-00]

general [K-MüllerQuade-11] [K-MüllerQuade-11]

ra
n

d
om

iz
ed

symmetric [Kilian-00]

asymmetric [Kilian-00]

general [Maji-Prabhakaran-Rosulek-12]
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Starting point: semi-honest completeness

Representation of crypto-gates

weighted bipartite graph


left part: views (x , a) of

right part: views (y , b) of

edges: Pr[a, b | x , y ]

AND:

(0, 0)

(1, 0)

(1, 1)

(0, 0)

(1, 0)

(1, 1)

BSC:

(0, ε)

(1, ε)

(ε, 0)

(ε, 1)

Semi-honest completeness [Maji-Prabhakaran-Rosulek-12]

complete ⇔ graph has connected component which is no product graph

complete

⇔ adjacency matrix has full-rank non-diagonal 2×2-submatrix
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Malicious completeness

Redundancy

maliciously use only part of the crypto-gate, yet emulate honest behavior

(0,0)

(0,0) (0,1) (1,0) (1,1)

(0,0) 1/4 1/4 1
(0,1) 1/4 1/4

(1,0) 1/4 1/4
(1,1) 1 1/4 1/4

Efficient characterization of malicious completeness

1 detect redundancies (use linear programming)

2 keep removing redundancies, eventually obtain redundancy-free “core”

3 malicious complete ⇔ core is semi-honest complete
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use crypto-gate as “channel”

“sends” (x , a) “receives” (y , b)

hiding: push information through channel at larger rate than capacity

binding: use good enough relative distance code

Caveats

receiver influences channel

redundancy-free 6⇒ unfakeable input distributions
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Open Questions & Related Fields
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Non-interactive completeness

F

related to Decomposable Randomized Encodings

what we know

string-OT from bit-OT
[Brassard-Crépeau-Santha-96]

NC1-NISC from OT, general NISC from OT+PRG
[Ishai-Kushilevitz-Ostrovsky-Prabhakaran-Sahai-11]

open questions

general information-theoretic NISC from OT?
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Leaky & unfair primitives

what we know

completeness criteria for unfair
noisy channels
[Crépeau-Kilian-88,
Damg̊ard-Kilian-Salvail-99,
Damg̊ard-Fehr-Morozov-Salvail-04,
Wullschleger-09]

open questions

more complex crypto-gates?

deterministic crypto-gates?

F
r ←R

x y

z

fA(x , y , z , r) fB(x , y , z , r)

related to Combiners and Extractors
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Non-complete crypto-gates

what we know

classification of trivial crypto-gates
[Kushilevitz-92, Beimel-Malkin-Micali-99,
Künzler-MüllerQuade-Raub-09,
Maji-Prabhakaran-Rosulek-09]

examples for infinite hierarchy
[Kilian-Kushilevitz-Micali-Ostrovsky-00,
Maji-Prabhakaran-Rosulek-09]

Non-complete crypto-gates are symmetric!

open questions

concrete equivalence classes?

constant-rate vs arbitrary (efficient) reduction?
trivial

? ? ? ?

? ? ?

complete

related to Black-Box Separations
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More than O(1)-size

this work

O(1)-size  efficient protocol for negligible error

O(2k)-size  exponential complexity for negligible error?

what we know

highly structured examples (e.g., string-OT, OPE)

black-box reductions for oracle functionalities, e.g., IC and RO
[Luby-Rackoff-88, Coron-Patarin-Seurin-08,
Holenstein-Künzler-Tessaro-11, Baecher-Brzuska-Mittelbach-13]

Random Oracle ≡ Commitments
[Mahmoody-Maji-Prabhakaran-12]

open questions

completeness criteria for oracles?

good definition for interesting crypto-gates with infinite number of
possible inputs?
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Computationally bounded adversaries

what we know

An asymmetric F is complete, iff for some x0, x1 it is infeasible to
reduce f (x1, ·) to f (x0, ·) [Harnik-Naor-Reingold-Rosen-04].

Assuming a computational semi-honest OT protocol, (almost) every
2-party functionality is either trivial or complete
[Maji-Prabhakaran-Rosulek-10, Rosulek-12].

In the semi-honest model, any constant round protocol for a non-
trivial O(1)-size function can be turned into an OT protocol
[Lindell-Omri-Zarosim-12].

black-box separations between OT, key-agreement, CRHF, OWF
[Impagliazzo-Rudich-89, Simon-98,
Gertner-Kannan-Malkin-Reingold-Viswanathan-00,
Gertner-Malkin-Reingold-01]

open questions

non-black-box reduction of OT to one-way functions?
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