Distributed Point Functions and their Applications

Niv Gilboa (BGU) Yuval Ishai (Technion)

The concept

- Consider point functions
 - P_{xy} ; $x \in \{0,1\}^n$, $y \in \{0,1\}^m$
- Point function
 - $P_{xy}(x')=0$ if $x'\neq x$ and $P_{xy}(x)=y$.
- Our goal is additively share a secret point function using a succinct representation
 - The shares are F_0 and F_1 s.t $P_{xy} = F_0 \oplus F_1$.

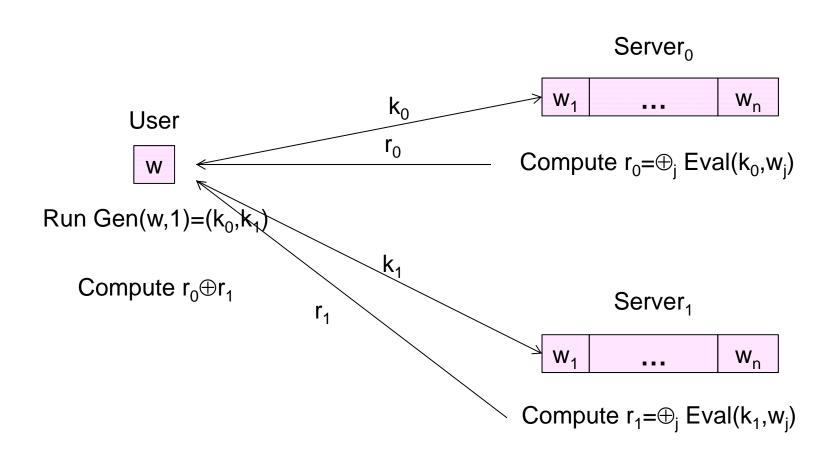
Model

- More formally, a Distributed Point Function (DPF) is two PPT algorithms
 - $Gen(x,y)=(k_0,k_1)$
 - Eval(k,x')
- Such that
 - Correctness $P_{xy}(x')$ =Eval (k_0,x') ⊕Eval (k_1,x')
 - Secrecy k_0 (or separately k_1) can be simulated given only |x| and |y|.

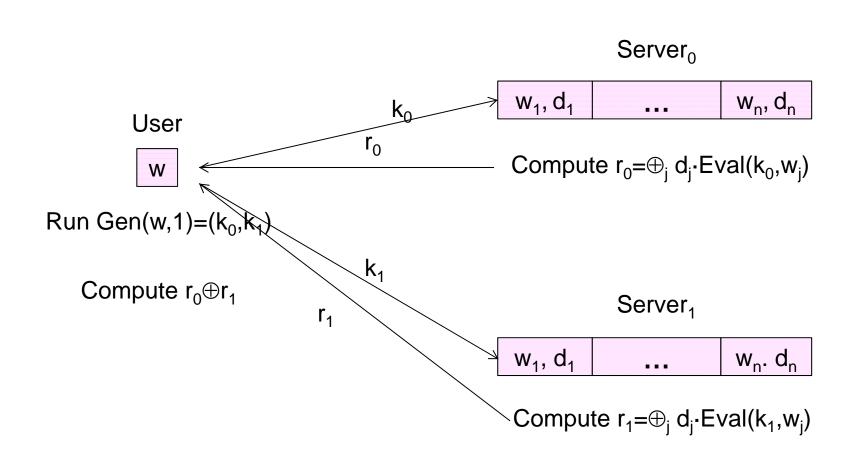
Motivation

- Why be interested in this question?
- Interesting applications!
- Two server Private Information Retrieval (PIR) [CGKS95].
- Two server Private retrieval by Keywords [CGN97, FIPR05, OS07].
- Private Information Storage [OS97].
- Worst-case to average case reductions [BF90, BFNW91].

Using DPF for keywords



Using DPF for keywords



Results

- Main theorem: OWF → DPF.
- Key size is short
 - For security parameter k (e.g. length of AES key) it is $^{8}k|x|^{\log 3}+|y|$ bits.

Converse: DPF → OWF

Exact numbers

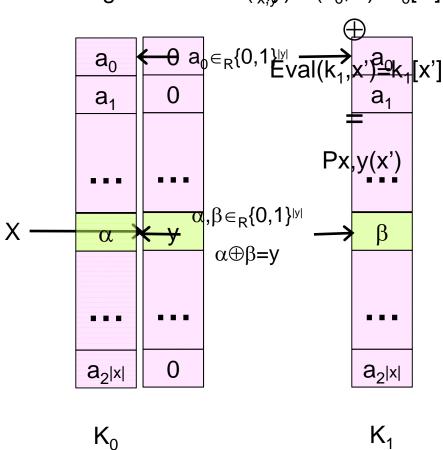
X	Key size (in bytes)	
20	300 bytes	
40	~630 bytes	
80	~2.25 Kbytes	
160	~8 Kbytes	

Results - applications

- PIR scheme -
 - First poly-logarithmic, constant server PIR scheme based on OWF.
 - First poly-logarithmic, binary, two server scheme (improving on [CG97]).
- PIR writing (storage) similar to PIR results.
- Keyword search first 2-server solution with 1-bit answers.
- Efficient worst-case to average-case
 2-query reductions for PSPACE and EXPTIME complete languages.

Trivial Solution $(2^{|x|})$

Target Funct@en(x,y)val $(k_0,x')=k_0[x']$



Improvement-Preliminaries

- Regard $P_{x,y}$ as two-dimensional.
- Instead of $P_{x,y}:\{0,1\}^{|x|} \rightarrow \{0,1\}^{|y|}$ think of

$$P_{(i,j),y}:\{0,1\}^{|x|/2}\times\{0,1\}^{|x|/2}\rightarrow\{0,1\}^{|y|}$$

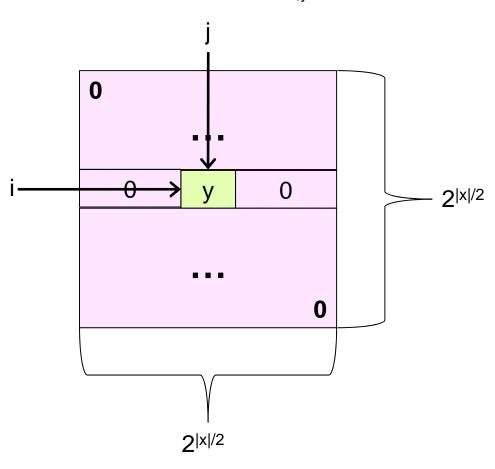
Let G be a pseudo-random generator.

Preliminaries (cont.)

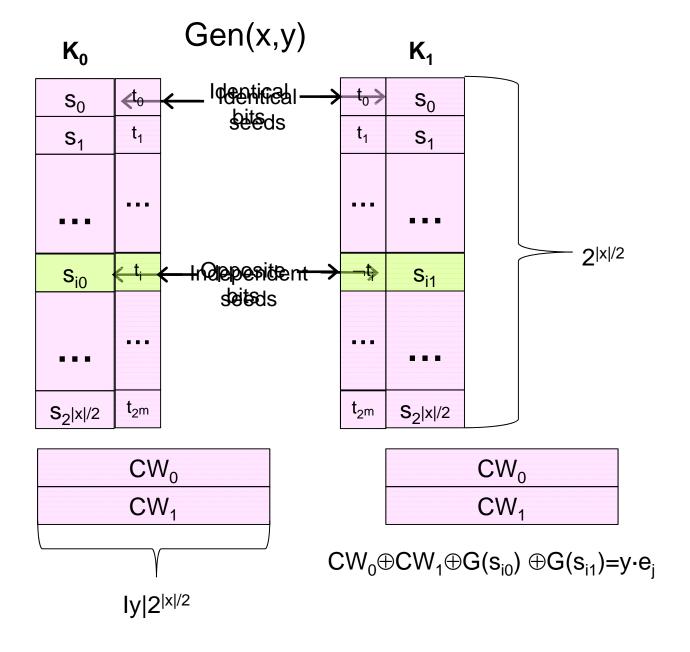
- What if Gen(x,y) produces
 - $k_0 = (s_1, ..., s_{i0}, ..., s_{2|x|/2})$
 - $k_1 = (s_1, ..., s_{i1}, ..., s_{2|x|/2})$
- For x' represented by (i',j'), let $Eval(k_0,x')=G(s_{i'})[j']$.
- Then

$2^{|x|/2}$ solution

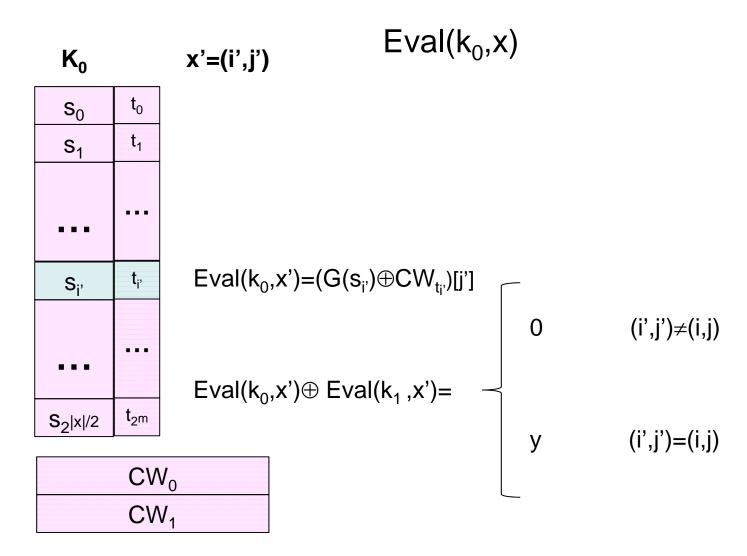
Target Function $P_{x,y}$



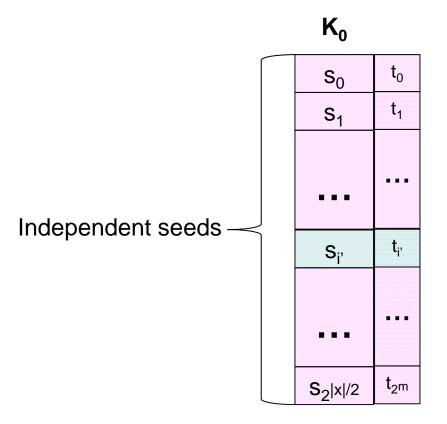
$2^{|x|/2}$ solution



$2^{|x|/2}$ solution



Secrecy



 $CW_0 \oplus CW_1 \oplus G(s_{i0}) \oplus G(s_{i1}) = y \cdot e_j$

CW_0	
CW_1	

Is this good or bad?

- We have a solution for a distributed point function.
- · Oh! That's good!
- But the key length and running times are exponential in |x| ($2^{|x|/2}|y|$ to be exact).
- · Oh! That's bad!
- · Can we improve the length and time?

Recursion - Gen

- · Let's look at the Gen algorithm again.
- The keys k_0 , k_1 are made up of
 - $2^{|x|/2}$ seeds all identical except one
 - $2^{|x|/2}$ bits (t_i) all identical except one
 - Two identical correction words CWO, CW1
- Call Gen(i, seed) recursively on domain of size $2^{|x|/2}$ seeds (plus bits).

Recursion - Gen (cont.)

- What about the two correction words?
- Recall: $CW_0 \oplus CW_1 = G(s_{i0}) \oplus G(s_{i1}) \oplus y \cdot e_i$
 - Exchange $y \cdot e_j$ by a call to Gen(j,y)
- Result each step of recursion returns a key of length ≈ 3 (previous length)^{1/2}.
- Stop recursion at shortest key length.

Recursion - Eval

- On a call Eval(k_0,x') for x'=(i',j')
 - Parse k_0 as σ , CW_0 , CW_1 , where σ is the result of Gen on the seeds.
 - Run Eval recursively on σ to derive $s_{i'}$, $t_{i'}$
 - Compute $v=G(s_{i'})\oplus CW_{t_{i'}}$
 - Run Eval recursively on (v,j') to obtain output.

Thank You!!!