Distributed Point Functions and
their Applications

Niv Gilboa (BGU)
Yuval Ishai (Technion)

The concept

» Consider point functions

- Py xe{0, 1", ye{0,1)m

* Point function

- P (x)=0 if x'#x and P, (x)=y.

* Our goal is additively share a secret

point function using a succinct
representation

- The shares are FO and Fl s.T ny:FO@FI'

Model

* More formally, a Distributed Point
Function (DPF) is two PPT algorithms

- Gen(x,y)=(ko.kq)

- Eval(k,x")

» Such that

- Correctness - P, (x')=Eval(kq,x")®Eval(k,,x')

- Secrecy - k, (or separately k;) can be
simulated given only x| and |y].

Motivation

* Why be interested in this question?
» Interesting applications!

- Two server Private Information Retrieval

(PIR) [CGKS95].

» Two server Private retrieval by Keywords
[CGN97, FIPRO5, OS07].

* Private Information Storage [OS97].

+ Worst-case to average case reductions
[BF90, BFNW91].

Using DPF for keywords

Server,
W W
User s : n

r
= 0 Compute r,=®, Eval(ko,w,)
Run Gen(w,1)=(k,,

Compute ry®r, Server,

Wl Wn

Compute r,;=®, Eval(k;,w))

Using DPF for keywords

Server,

k Wl, dl R Wn’ dn
User .
0
= Compute r,=®, d;-Eval(ko,w))
Run Gen(w,1)=(k,,

Compute ry®r, Server,

Wl’ dl 300 Wn' dn

Compute r,=®, d;-Eval(k,,w,)

Results

* Main theorem: OWF - DPF.

+ Key size is short

- For security parameter k (e.g. length of
AES key) it is ~8k:|x|°93+|y| bits.

- Converse: DPF > OWF

Exact numbers

IX] Key size (in
bytes)
20 300 bytes
40 ~630 bytes
80 ~2.25 Kbytes

160 ~8 Kbytes

Results - applications

+ PIR scheme -

- First poly-logarithmic, constant server PIR scheme
based on OWF.

- First poly-logarithmic, binary, two server scheme
(improving on [CG97]).

* PIR writing (storage) - similar to PIR results.

* Keyword search - first 2-server solution with
1-bit answers.

» Efficient worst-case to average-case
2-query reductions for PSPACE and EXPTIME
complete languages.

Trivial Solution (2/)

Target Funct@an® gyal(ko,x’)=kq[X’]

3]
2, = A <rt0 LR\ Ak e ek,
a, | O a,
Pxly(X)
Bepf0, 1}
X N Per{0,1} — B
a®p=y
aylx || O a,
Ko K,

[X]

Improvement-Preliminaries

* Regard P, , as two-dimensional.
+ Instead of P,:{0,1}xI5{0,1}IV think of

Pii.iy {0, 13X172x{0,1}Ix1725{0, 1} Iv!

* Let G be a pseudo-random generator.

Preliminaries (cont.)

* What if Gen(x,y) produces
- kO:(Sl,...,Sio,...,Szlxl/Z)
- klz(Sl,...,Sil,...,52|x|/z)

* For x' represented by (i',j), let
Eval(ko X)=6(s,)[j 1

* Then -
Py(X) =i

Eval(k,, X’)®Eval(k,,X")=—

Junk If 'l

~———

21x1/2 golution

Target Function P, ,

J

—

D
A 4
=
o

— o2

2[x}/2

21x1/2 golution

K, Gen(x,y) K,
Sy |de—r¢— Iq@é}qﬁé‘él% So

: &iisds .
Sl 1 1 Sl

. = 2Jx|/2
S, fi—g—Hidepesitent—>—t | s,
fitsls
S,lxj2 | tom Lm | S,|x)/2
CW, CW,
CW, CW;
| CWdCW,;8G(s)0) DG(siy)=Y €

ly|21xV2

21x1/2 solution
Eval(k,,X)

Eval(ko,X)=(G(s;)®CW,)[i

Eval(ky,x')® Eval(k, ,x)=

Kq X=(0"))
So | b
ST
S
Solxj2 | tem
CW,

CW,

—

0

y

(".1)=(1.))

(.1)=(1.))

Independent seeds —

Secrecy

S, [x|/2

A

Cw,

Is this good or bad?

+ We have a solution for a distributed
point function.

* Ohl That's good!

* But the key length and running times
are exponential in |x| (21X172|y| to be
exact).

* Ohl That's bad!
» Can we improve the length and time?

Recursion - Gen

* Let's look at the Gen algorithm again.
» The keys kg, k; are made up of

- 2Ix1/2 seeds - all identical except one
- 2IXI72 bits (t,) - all identical except one
- Two identical correction words CWO, CW1

» Call Gen(i, seed) recursively on domain
of size 2!xI/2seeds (plus bits).

Recursion - Gen (cont.)

* What about the two correction words?
+ Recall: CW@CW,=G(s;y) ®G(s;)Dy-€;

- Exchange y-e; by a call to Gen(j,y)

+ Result - each step of recursion returns
a key of length ~3(previous length)!/2.

+ Stop recursion at shortest key
length.

Recursion - Eval

- On a call Eval(ky.x") for x'=(i',j")

- Parse k, as o, CW,, CW,, where ¢ is the
result of Gen on the seeds.

- Run Eval recursively on ¢ to derive s;, t;
- Compute v=6(s;)OCW,,

- Run Eval recursively on (v,j') to obtain
output.

Thank Youlll

