Dual System Encryption via Doubly Selective Security:

Framework, Fully-secure Functional Encryption for Regular Languages, and More

Nuttapong Attrapadung (Nuts)
AIST, Japan
@Eurocrypt 2014, Copenhagen

Our Results in One Slide

Framework
for fully-secure FE
(with tighter reduction)

Instantiations:

The first fully secure

- FE for regular languages
- ABE with short ciphertext
- unbounded ABE

and more

Our Results in One Slide

Framework
for fully-secure FE
(with tighter reduction)

Instantiations:

The first fully secure

- FE for regular languages
- ABE with short ciphertext
- unbounded ABE

focus in this talk

and more

Introduction

Functional Encryption Syntax

FE for predicate $R:A\times B\to\{0,1\}$ or family $\{R_k\}_k$

• Setup
$$(k, 1^{\lambda})$$

$$\longrightarrow$$
 PK, MSK

• Encrypt(Y,M,PK) \longrightarrow CT

for ciphertext attribute *Y*

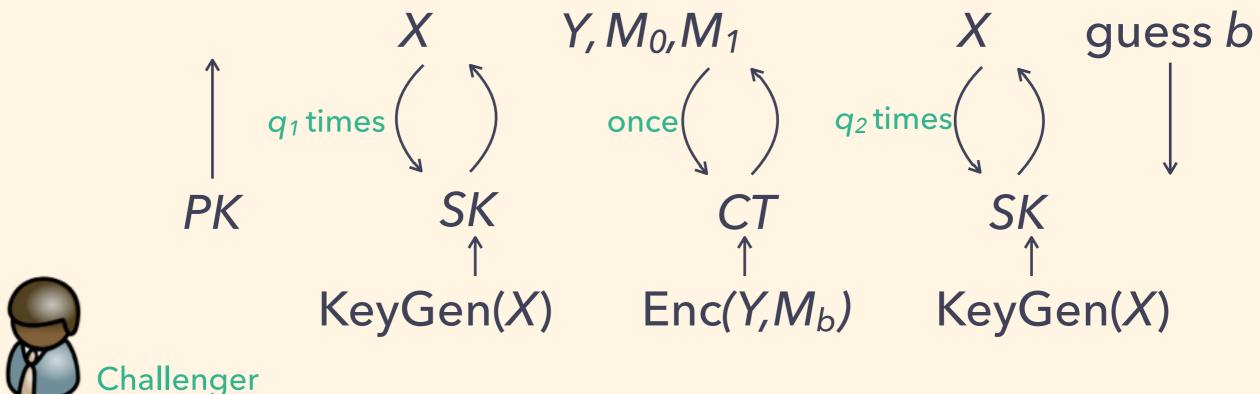
• KeyGen(X,MSK,PK) \longrightarrow SK

for key attribute *X*

• Decrypt(CT,SK) \longrightarrow M if R(X,Y)=1

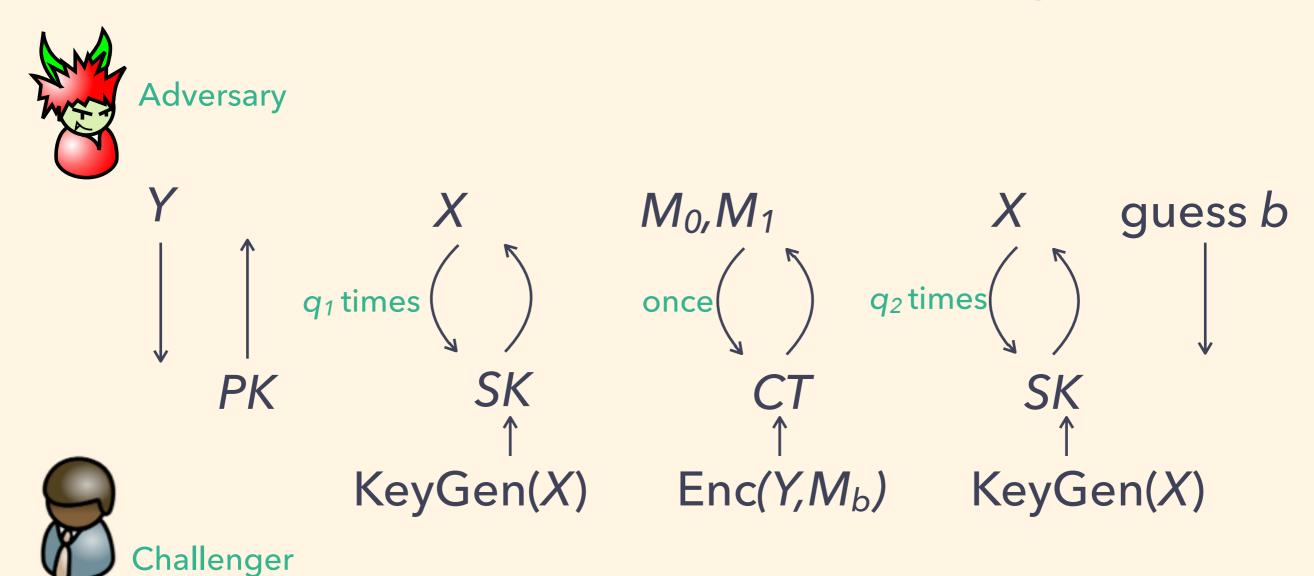
FE here means the class "Public-index Predicate Encryption" of FE [BSW11].

Definition of Full Security for FE



Non-triviality condition: R(X,Y)=0

Definition of Selective Security for FE

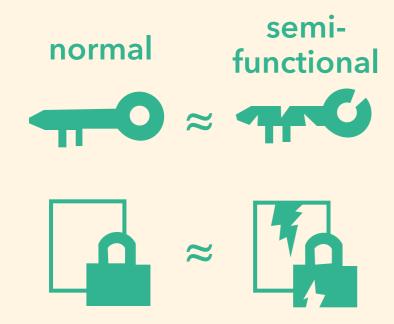


Non-triviality condition: R(X,Y)=0

Approaches for Full Security

Partitioning

- **IBE** [BB04b, Waters05]
- Seem not to work with richer FE



Dual-System Encryption [Waters09]

- Work also with richer FE:
 - ABE [LOSTW10,OT10,LW12,....]
 - Inner-product enc [OT12,...]
 - Spatial encryption [AL10,...]

Dual System Also Offers Simplicity.

An original FE scheme

Selectively-secure

Similar scheme but in composite-order bilinear group

A candidate for fully-secure scheme

Boneh-Boyen IBE

(selectively secure)

$$CT = (g^s, g^{s(h_1 + h_2 ID)}, e(g,g)^{as}M)$$

$$SK = (g^{a+r(h_1+h_2lD')}, g^r)$$

Lewko-Waters IBE

(fully secure)

$$CT=(g^s, g^{s(h_1+h_2lD)}, e(g,g)^{as}M)$$
 $CT=(g_1^s, g_1^{s(h_1+h_2lD)}, e(g_1,g_1)^{as}M)$

$$SK = (g_1^{a+r(h_1+h_2lD')}g_3^{w_1}, g_1^{r}g_3^{w_2})$$

Boneh-Boyen IBE

(selectively secure)

$$CT=(g^s, g^{s(h_1+h_2lD)}, e(g,g)^{as}M)$$

$$SK = (g^{a+r(h_1+h_2lD')}, g^r)$$

Lewko-Waters IBE

(fully secure)

$$CT=(g_1^s, g_1^{s(h_1+h_2ID)}, e(g_1,g_1)^{as}M)$$

$$SK = (g_1^{a+r(h_1+h_2lD')}g_3^{w_1}, g_1^{r}g_3^{w_2})$$

Abstract Selective Secure FE

 $CT=(g_1^{c(s,h)}, e(g_1,g_1)^{as}M)$

$$SK = g_1^{k(a,r,h)}$$

Abstract Fully Secure FE?

 $CT = (g_1^{c(s,h)}, e(g_1,g_1)^{as}M)$

 $SK = g_1 k(a,r,h).g_3 w$

Apply to any scheme?

Successful Applications

Selective Full

IBE BB04 LW10

ABE GPSW06 LOSTW10

Spatial Encryption BH08 AL10

Unsuccessful Applications

Selective Full

FE for regular languages

Waters12

ALP11

problem!

Fully-unbounded ABE

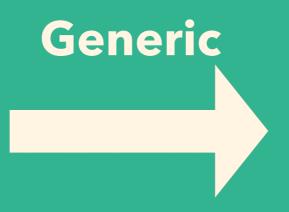
ABE w/ short ciphertexts

RW13

Why did "traditional" dual systems fail for some schemes?
How to overcome that barrier?

To systematically answer, we provide a generic framework.

New primitive: Pair Encoding



FE Scheme

Perfectly secure pair encoding

Computationally secure encoding

"Doubly selective security"

New primitive: Pair Encoding

Generic

FE Scheme

Perfectly secure pair encoding

Fully secure FE

Computationally secure encoding

"Doubly selective security"

Fully secure FE

+ tighter reduction

New primitive: Pair Encoding

FE Scheme

Perfectly secure pair encoding

Fully secure FE

Generalize "traditional" dual-systems, which implicitly use info-theoretic argument.

New primitive: Pair Encoding

FE Scheme

Generalize Lewko-Waters12 ABE + New techniques for tighter reduction.

Computationally secure encoding

Fully secure FE + tighter reduction

A Glance at Pair Encoding

Recall the abstract scheme

$$CT = (g_1^{c(s,h)}, e(g_1,g_1)^{as}M)$$

$$SK = g_1^{k(a,r,h)} \cdot g_3^{w}$$

Pair encoding consists of c() and k().

Our Answer to Instantiations

Selective

Fully-secure

FE for regular languages

Waters12

ABE w/ short ciphertexts

ALP11

Fully-unbounded ABE

RW13

Our Answer to Instantiations

Selective

Fully-secure

FE for regular languages

Waters12

ABE w/ short ciphertexts

ALP11

Fully-unbounded ABE

RW13

1

Why traditional dual systems failed:

(Implicit) encodings were not perfect.

Our Answer to Instantiations

Selective Fully-secure

Waters12 New!

ALP11 New!

RW13 New!

FE for regular languages

ABE w/ short ciphertexts

Fully-unbounded ABE

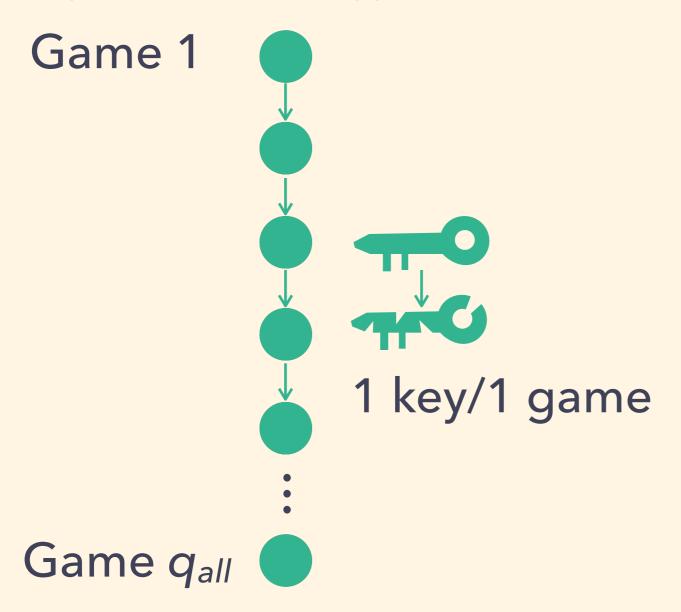
Why traditional dual systems failed: How to overcome: (Implicit) encodings were not perfect. Use computationally

secure encodings

A Glance at Tighter Reduction

All prior dual-system proofs

(except [Chen-Wee Crypto13])



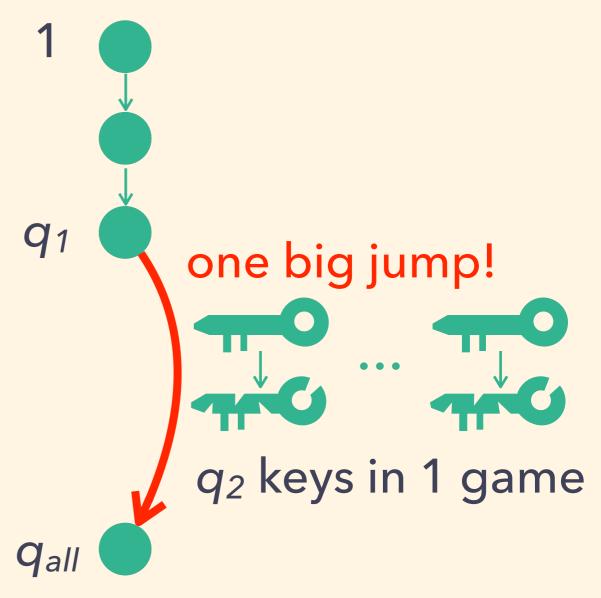
Reduction= $O(q_{all})$, $q_{all} = q_1 + q_2$

A Glance at Tighter Reduction

All prior dual-system proofs (except [Chen-Wee Crypto13])

Game 1 1 key/1 game Game qall

Our new approach



Reduction= $O(q_{all})$, $q_{all} = q_1 + q_2$

Reduction= $O(q_1)$

Related work on Dual-System Framework

- [Chen-Wee Crypto13]: Dual-system groups
 - Unify prime- and composite-order groups but only to specific predicates (HIBE).
 - Ours unifies for any predicate (but specific to composite-order).
- [Wee TCC14]: Predicate Encoding
 - Independently abstracting perfectly secure encoding.

2 Framework

Pair Encoding for predicate $R = \{R_k\}_k$

Enc1(X)
$$\longrightarrow k(a,r,h)$$
 where $r=(r_1,...,r_m)$

Enc2(Y)
$$\longrightarrow c(s,h)$$
 where $s=(s,s_1,...,s_w)$

Pair Encoding for predicate $R = \{R_k\}_k$

Param
$$(k) \longrightarrow |h|$$
 where $h=(h_1,...,h_m)$
Enc1 $(X) \longrightarrow k(a,r,h)$ where $r=(r_1,...,r_m)$

Enc2(Y)
$$\longrightarrow c(s,h)$$
 where $s=(s,s_1,...,s_w)$

Pair Encoding for predicate $R = \{R_k\}_k$

Param
$$(k) \longrightarrow |h|$$
 where $h = (h_1, ..., h_m)$
Enc1 $(X) \longrightarrow k(a,r,h)$ where $r = (r_1, ..., r_m)$
Enc2 $(Y) \longrightarrow c(s,h)$ where $s = (s,s_1, ..., s_w)$
Pair $(X,Y) \longrightarrow E$

• Correctness: If R(X,Y)=1,

 $k(a,r,h) E c(s,h)^{T} = as$

Pair Encoding for predicate $R = \{R_k\}_k$

Param
$$(k) \longrightarrow |h|$$
 where $h=(h_1,...,h_m)$
Enc1 $(X) \longrightarrow k(a,r,h)$ where $r=(r_1,...,r_m)$
Enc2 $(Y) \longrightarrow c(s,h)$ where $s=(s,s_1,...,s_w)$

$$Pair(X,Y) \longrightarrow E$$

- Correctness: If R(X,Y)=1, $k(a,r,h) E c(s,h)^T = as$
- Security: If R(X,Y)=0, ... to be defined.

Additional Requirements

Parameter-vanishing

$$k(a,0,h) = k(a,0,0)$$

Linearity for **k**

$$k(a_1,r_1,h)+k(a_2,r_2,h)=k(a_1+a_2,r_1+r_2,0)$$

Linearity for **c**

$$c(s_1+s_2,h) = c(s_1,h)+c(s_2,h)$$

Linearity implies homogeneity: k(0,0,0)=0, c(0,0)=0

Pair Encoding: Example for IBE

Param \longrightarrow 2 That is, $\mathbf{h} = (h_1, h_2)$ Enc1(ID) \longrightarrow $\mathbf{k}(a,r,\mathbf{h}) = (a+r(h_1+h_2ID), r)$ Enc2(ID') \longrightarrow $\mathbf{c}(s,\mathbf{h}) = (s, s(h_1+h_2ID'))$ Pair(ID,ID') \longrightarrow \mathbf{E} $= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

• Correctness If ID=ID'

$$(a+r(h_1+h_2ID),r)\begin{pmatrix}1&0\\0&-1\end{pmatrix}\begin{pmatrix}s\\s(h_1+h_2ID')\end{pmatrix}=as$$

Composite-order Bilinear Groups

G, G_T of order $N=p_1p_2p_3$

with bilinear map $e: G \times G \rightarrow G_T$

have prime-order subgroups G_1 , G_2 , G_3

Orthogonality: $e(g_i, g_i)=1$ iff $i\neq j$

Subgroup Decision: Decide if $T \in G_1$ or $T \in G_{12}$

Constructing FE from Pair Encoding

FE for predicate R from Pair encoding for R

Setup
$$\longrightarrow PK=(g_1,g_1^h,e(g_1,g_1)^a,g_3), MSK=a$$

Encrypt(
$$Y,M,PK$$
) $\longrightarrow CT=(g_1^{c(s,h)}, e(g_1,g_1)^{as}M)$ Enc2(Y)= $c(s,h)$

$$KeyGen(X,MSK) \longrightarrow SK = g_1^{k(a,r,h)} \cdot R_3$$

 $Enc1(X)=\mathbf{k}(a,\mathbf{r},\mathbf{h})$

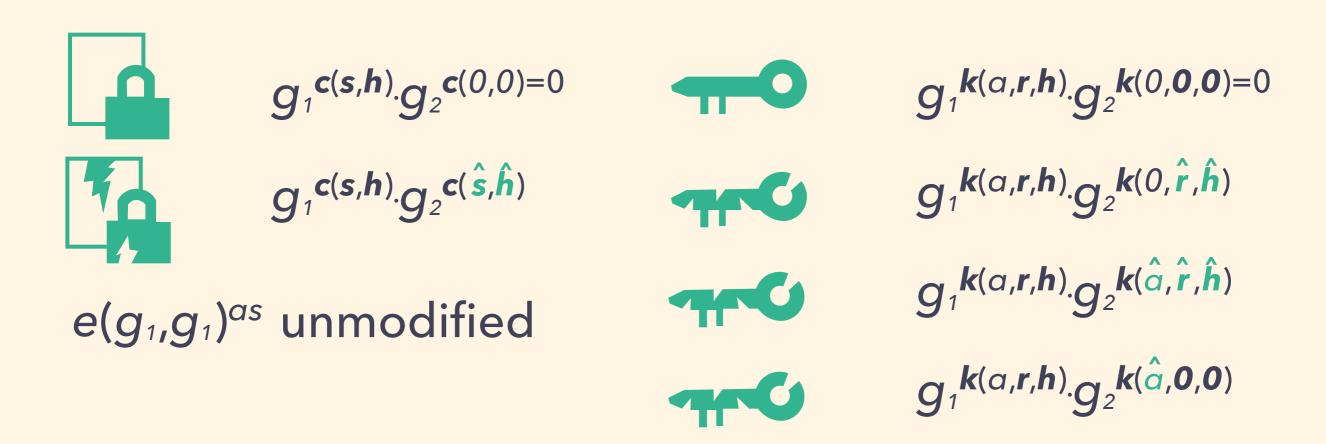
Decrypt(CT,SK)
$$\longrightarrow$$
 $e(g_1^{k(a,r,h)E}, g_1^{c(s,h)} \cdot R_3)$
= $e(g_1,g_1)^{as}$

 $k(a,r,h) E c(s,h)^{T} = as$

Security Proof of Our Framework

Semi-functional Ciphertexts/Keys

Can Be Defined in Terms of Pair Encoding Scheme



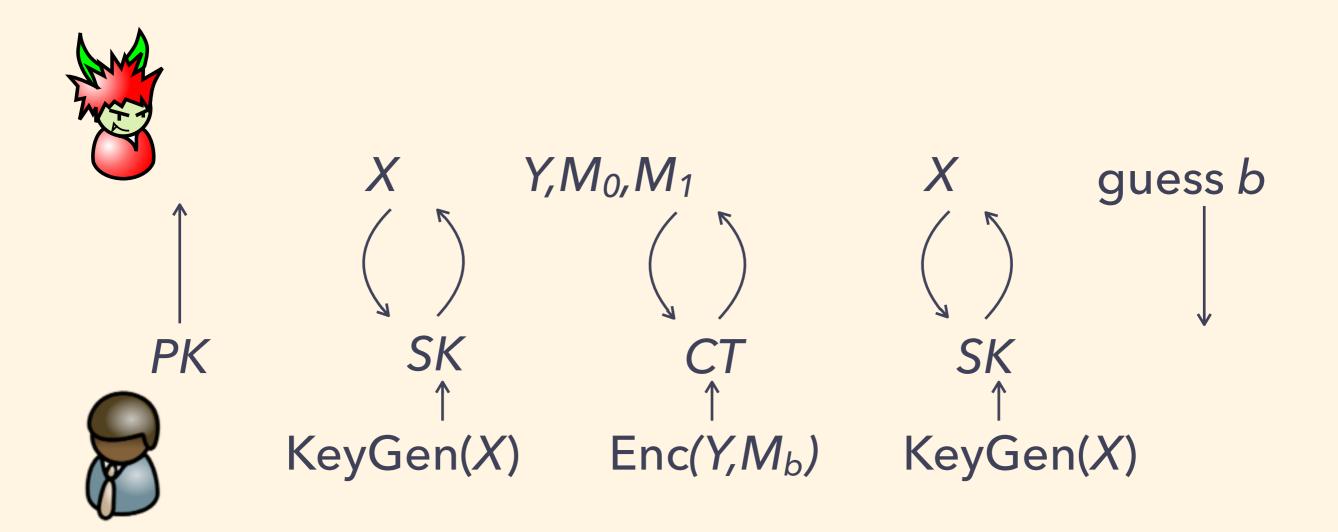
Each randomness except "semi-param" \hat{h} is fresh for each.

Semi-functional Ciphertexts/Keys

Can Be Defined in Terms of Pair Encoding Scheme

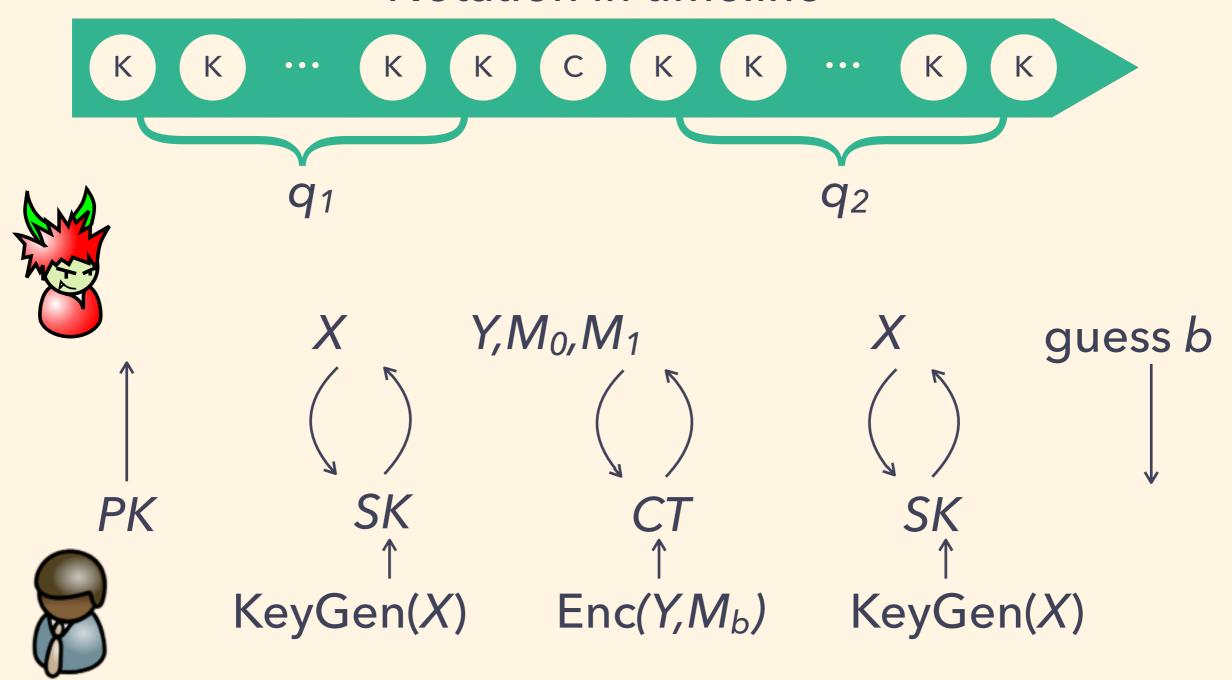
Each randomness except "semi-param" \hat{h} is fresh for each.

Recall Definition for Full Security



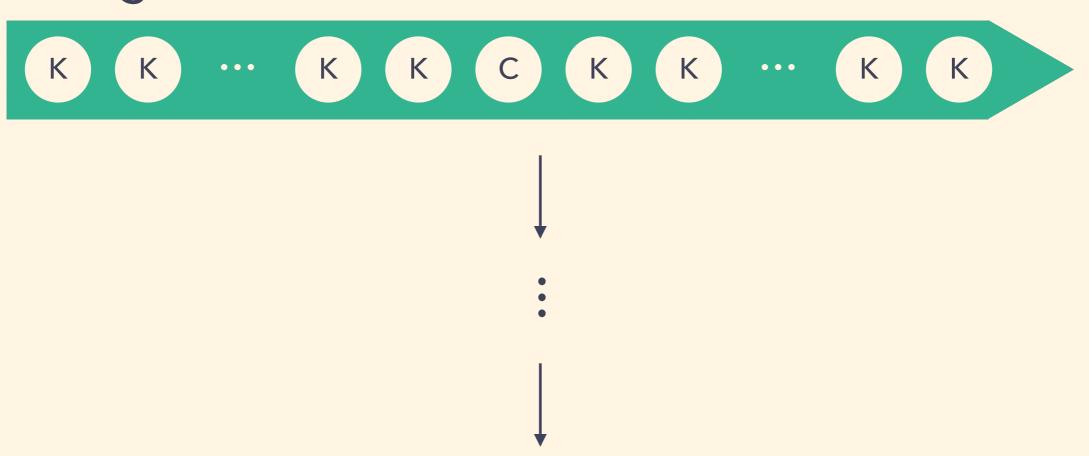
Recall Definition for Full Security

Notation in timeline



Aim of the Proof

Real game: all normal



Final game: all semi-functional

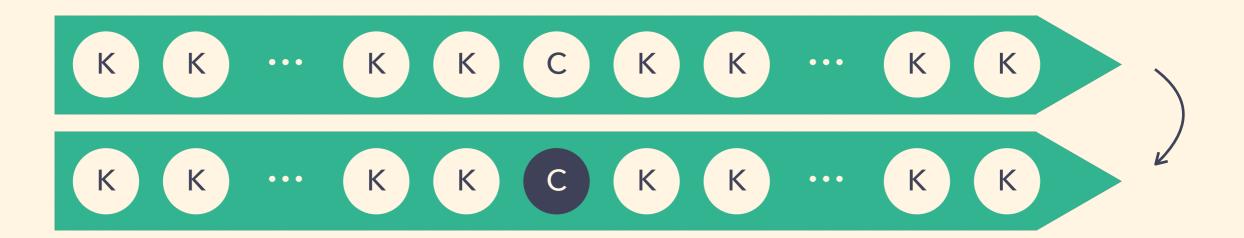
Final Game

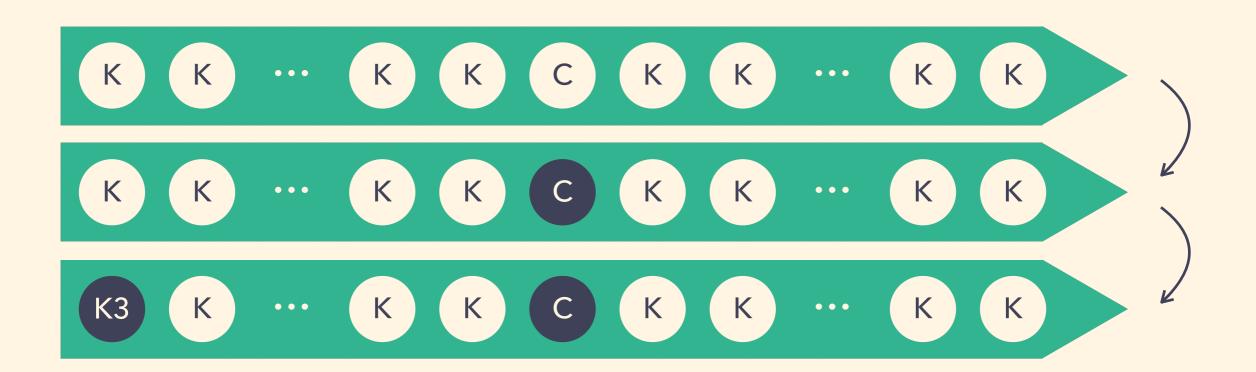
Adversary will have no advantage.

Intuition: decryption contains random $e(g_2,g_2)^{\hat{a}\hat{s}}$

$$g_1^{c(s,h)} g_2^{c(\hat{s},\hat{h})}$$
 $g_2^{k(\hat{a},0,0)}$

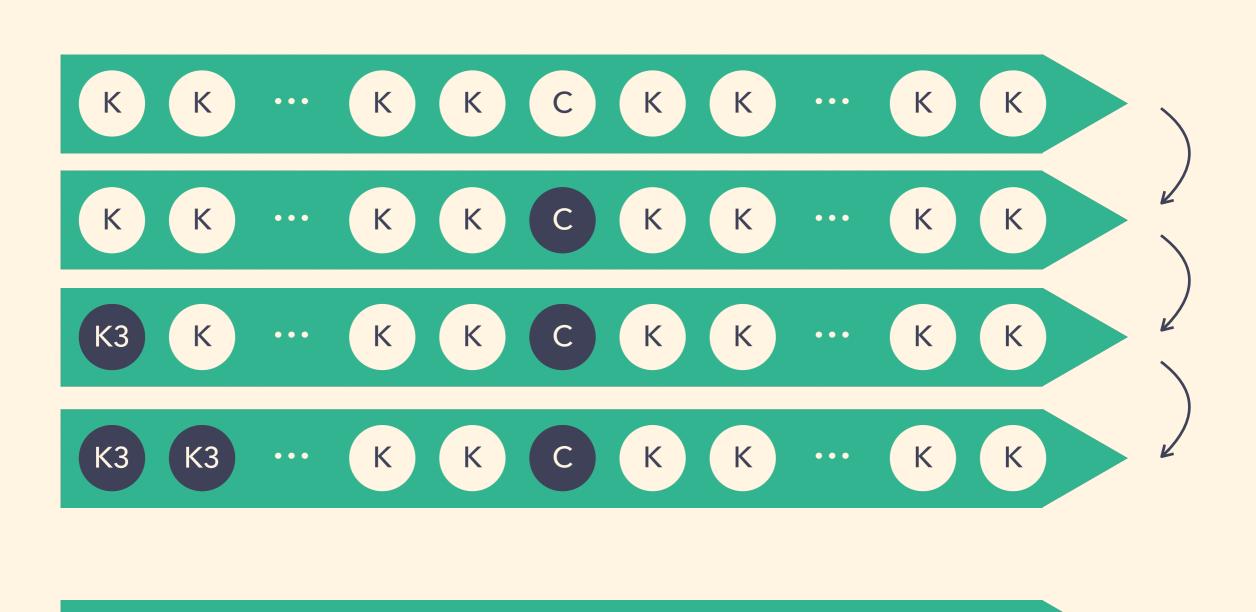
K3 K3 ··· K3 K3 C K3 K3 ··· K3 K3



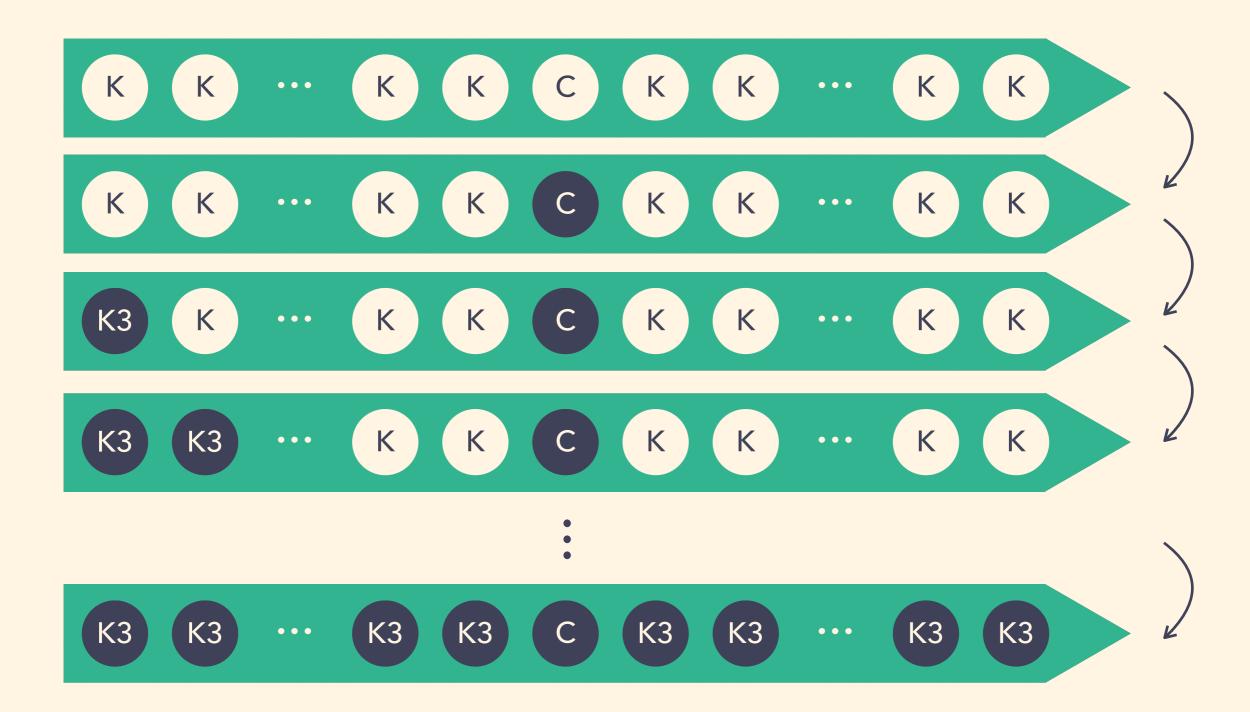


K3 K3 ... K3 K3 C K3 K3 ... K3 K3

K3

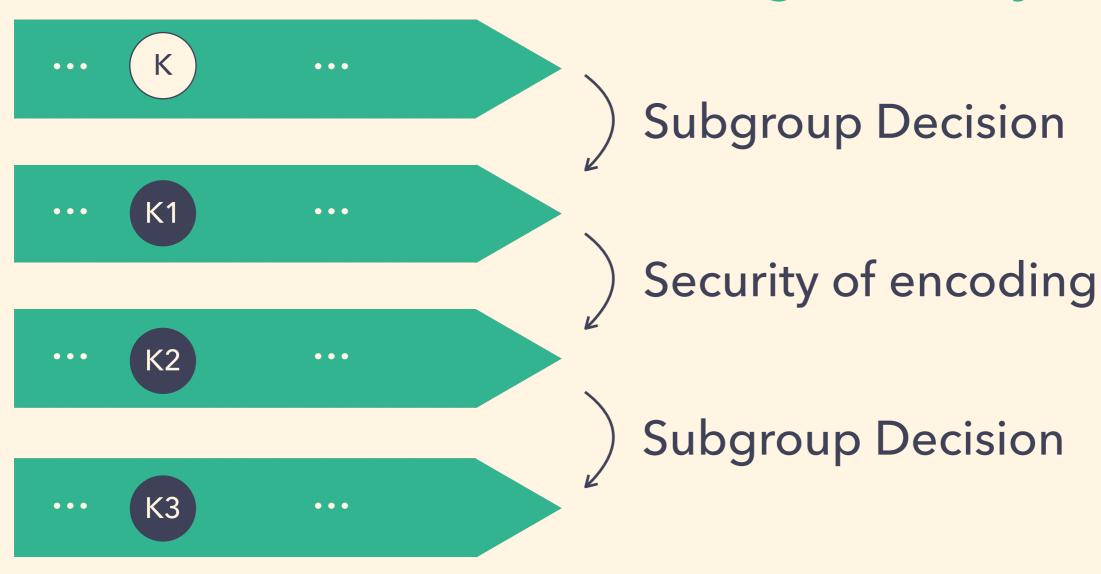


K3



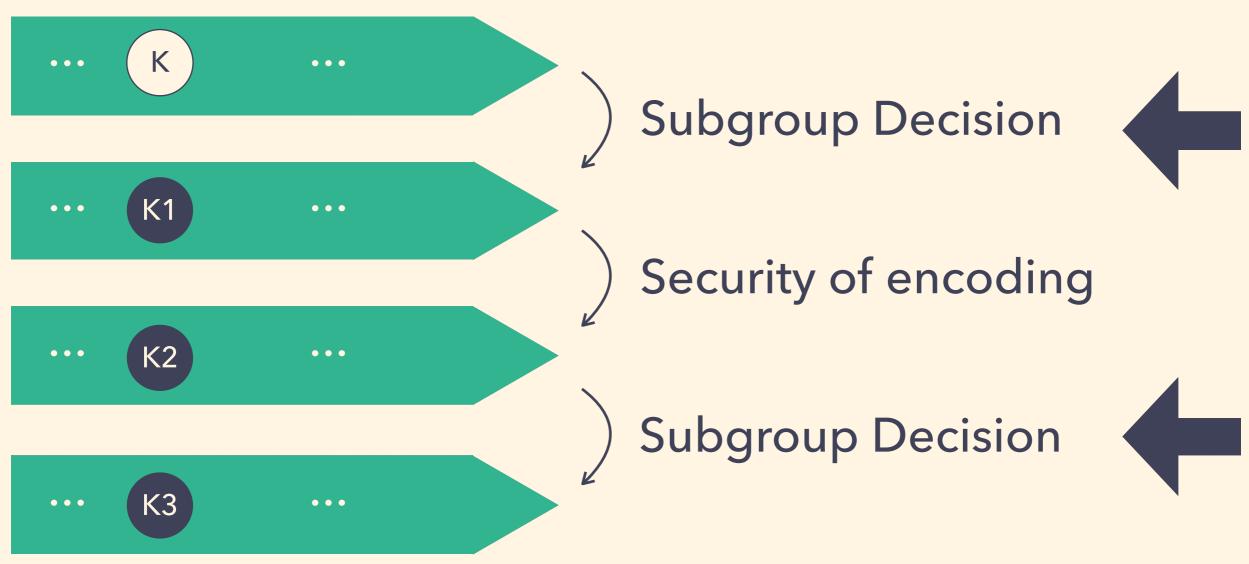
Game Subsequence

Indistinguishability based on



Game Subsequence

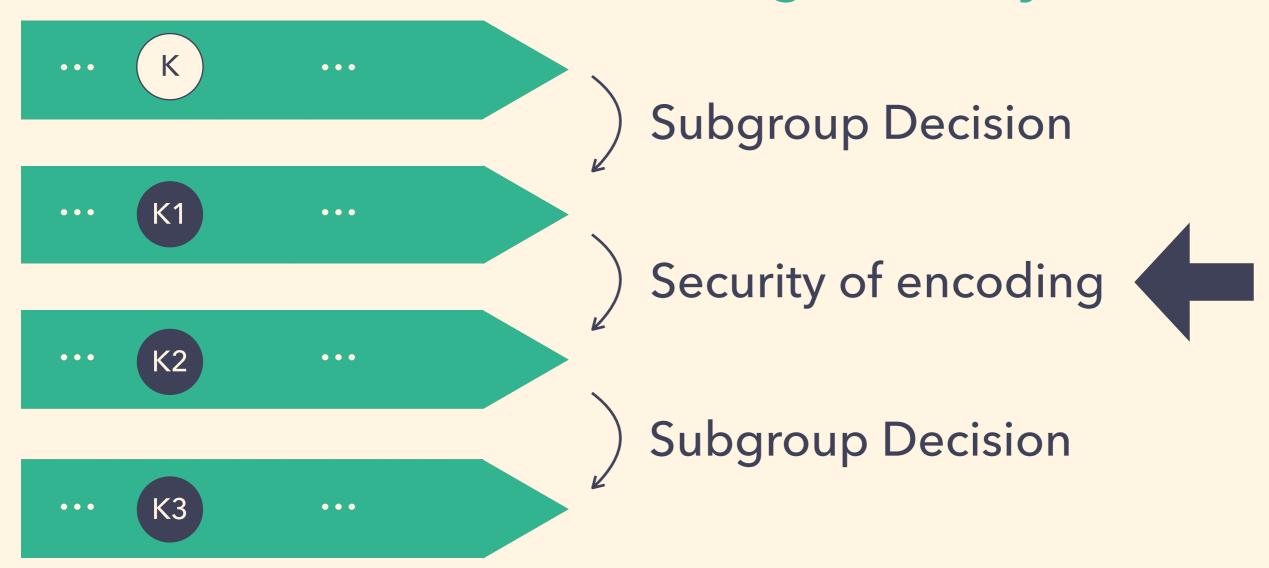
Indistinguishability based on



Intuition: These two do not depend on encoding. Use linearity, param-vanishing of k and orthogonality of G.

Game Subsequence

Indistinguishability based on



The 2nd Transition

$$\mathbf{K1} \quad \mathbf{g_1}^{\mathbf{k}(a,\mathbf{r},\mathbf{h})} \cdot \mathbf{g_2}^{\mathbf{k}(0,\hat{\mathbf{r}},\hat{\mathbf{h}})}$$

K1 $g_1^{k(a,r,h)}.g_2^{k(0,\hat{r},\hat{h})}$ Security of encoding $g_1^{k(a,r,h)}.g_2^{k(\hat{a},\hat{r},\hat{h})}$ (to be defined)

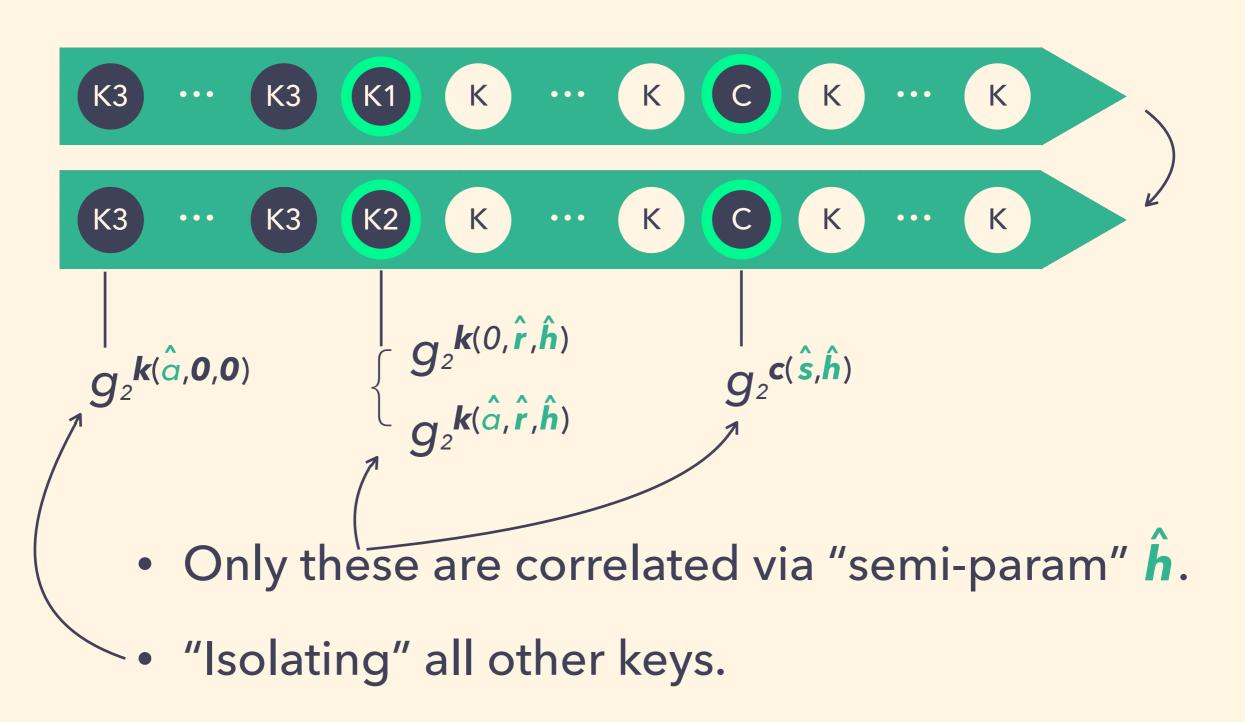
The 2nd Transition

K1
$$g_1^{\mathbf{k}(a,\mathbf{r},\mathbf{h})} \cdot g_2^{\mathbf{k}(0,\hat{\mathbf{r}},\hat{\mathbf{h}})}$$
 Security of encoding $g_1^{\mathbf{k}(a,\mathbf{r},\mathbf{h})} \cdot g_2^{\mathbf{k}(\hat{a},\hat{\mathbf{r}},\hat{\mathbf{h}})}$ (to be defined)

Idea: just define security of encoding to be exactly the indistinguishability of these two games!

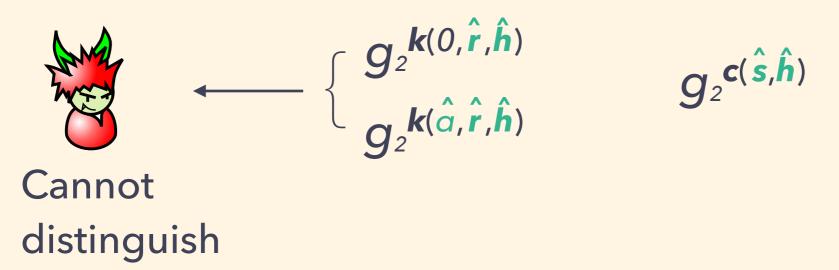
The 2nd Transition

In More Details



Defining Security of Encoding

Computationally secure encoding

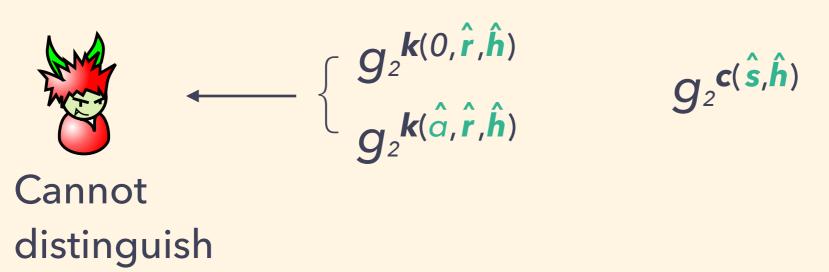


Defining Security of Encoding

Perfectly secure encoding

Identical
$$\{k(0,\hat{r},\hat{h})\}$$
 $(info-theoretic)$ $\{k(0,\hat{r},\hat{h})\}$ $(c(\hat{s},\hat{h}))$

Computationally secure encoding

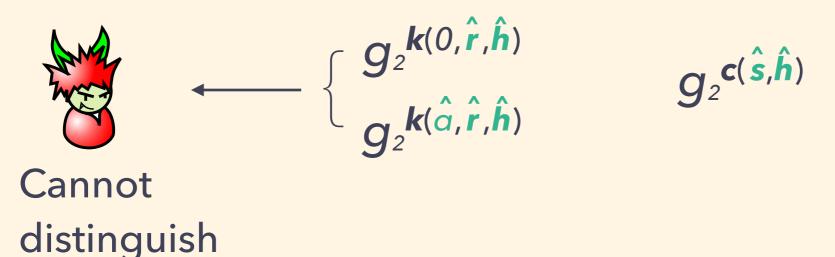


Defining Security of Encoding

Perfectly secure encoding

Identical
$$\{k(0,\hat{r},\hat{h})\}$$
 $(info-theoretic)$ $\{k(0,\hat{r},\hat{h})\}$ $(c(\hat{s},\hat{h}))$

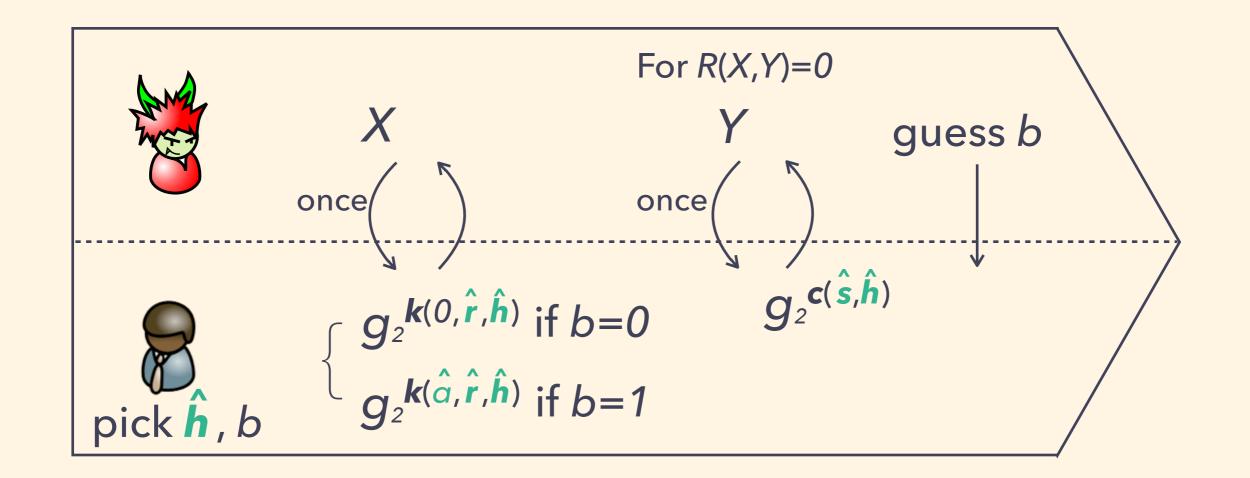
Computationally secure encoding



1st flavor: **k** before **c**

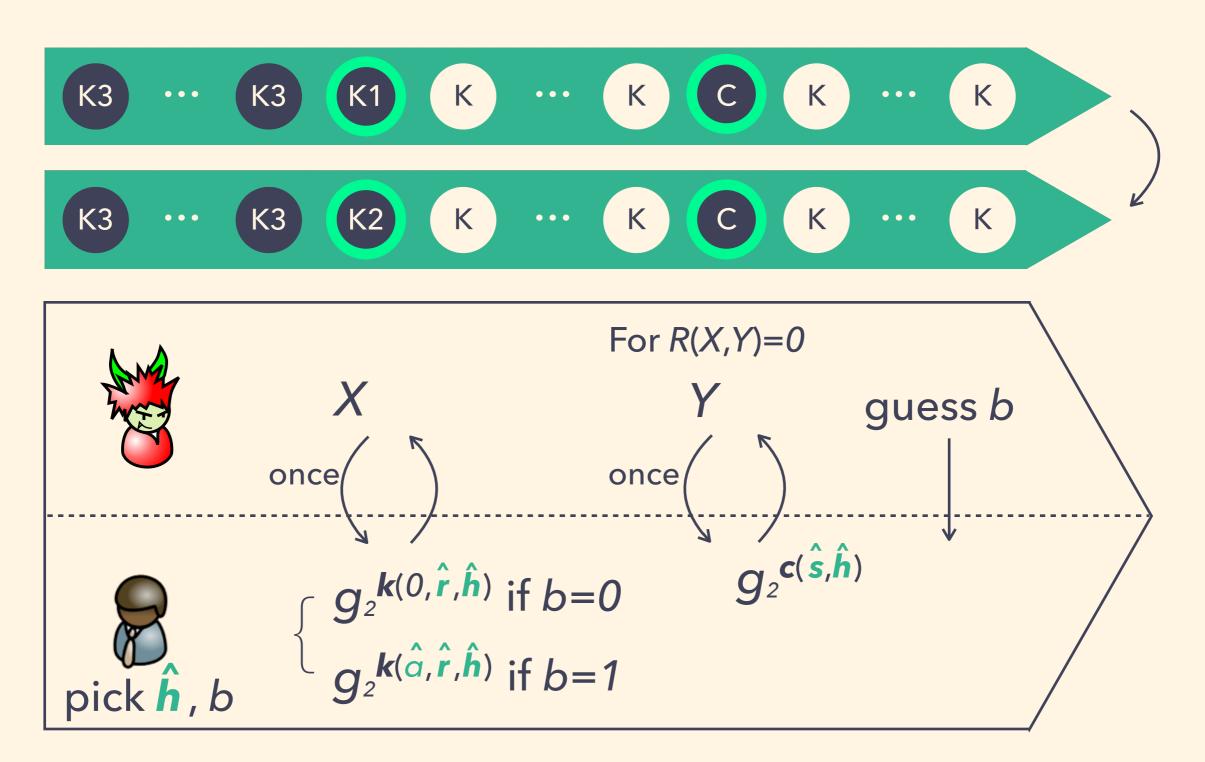
2nd flavor: **c** before **k**

Computationally Security 1: k before c

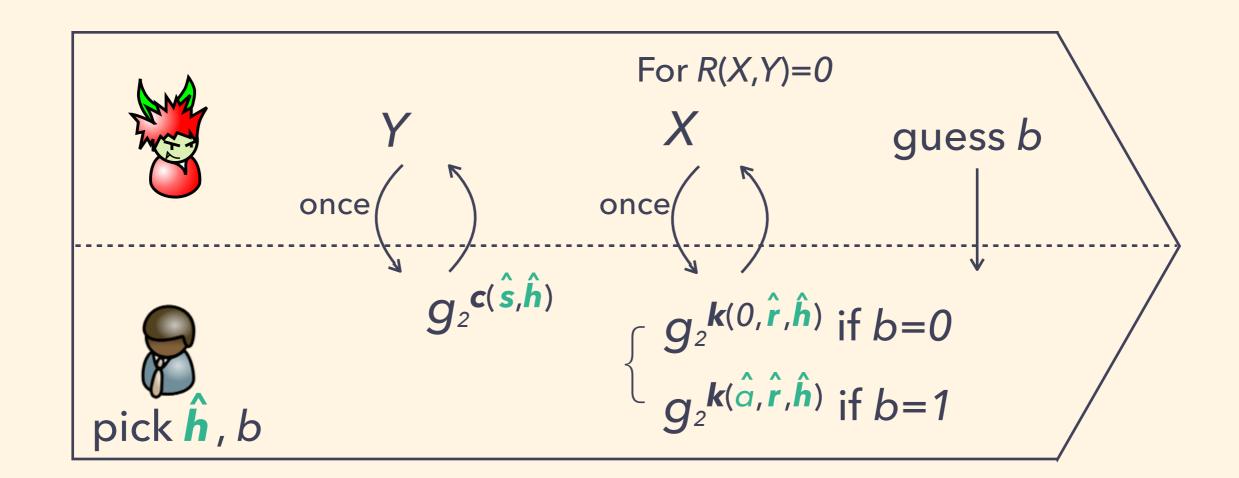


Computationally Security 1: k before c

For Transitions of Pre-challenge Keys

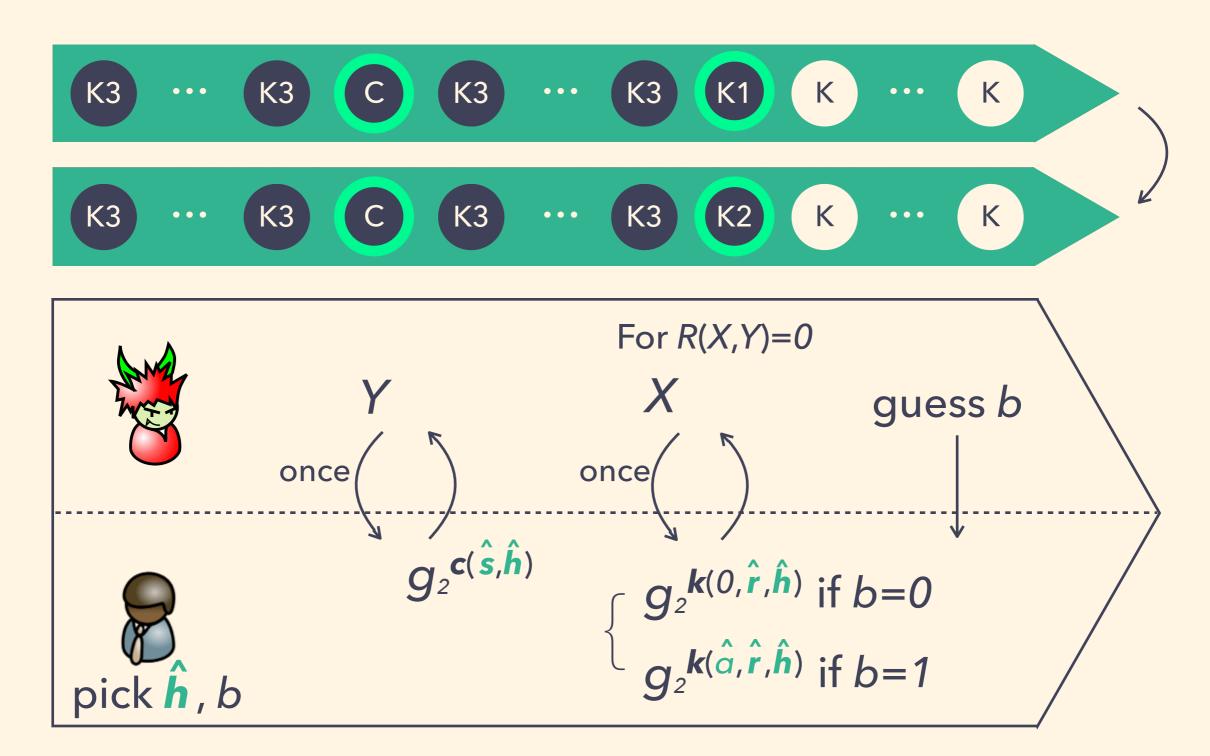


Computationally Security 2: c before k

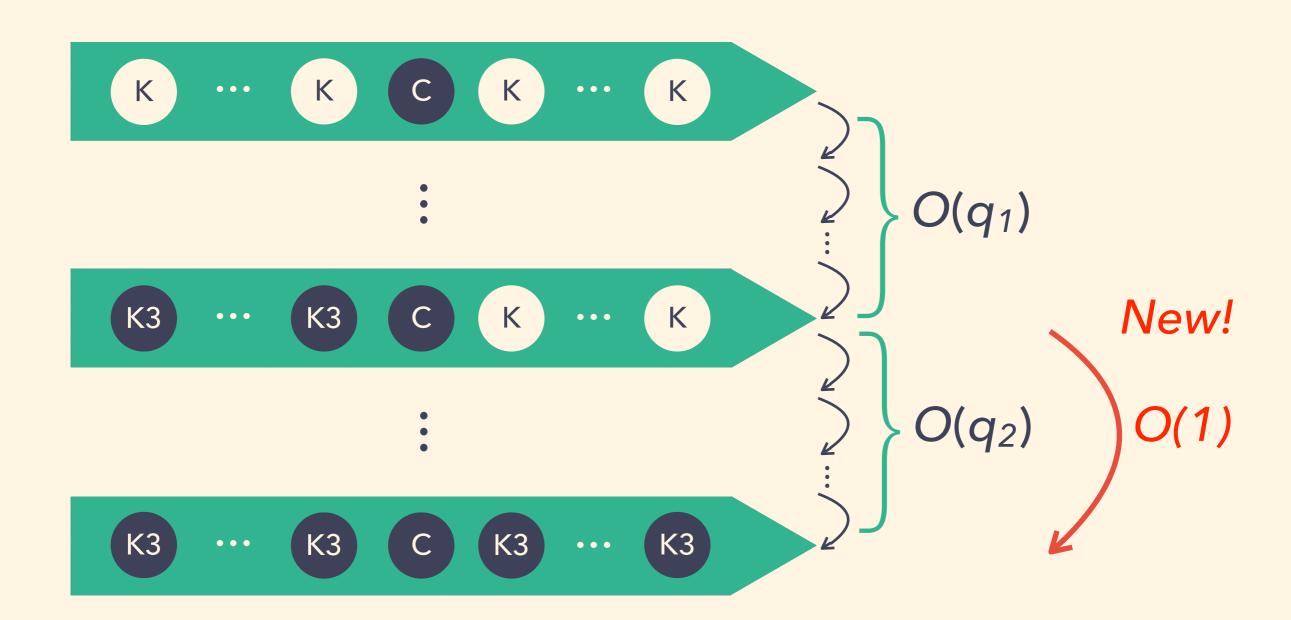


Computationally Security 2: c before k

For Transitions of Post-challenge Keys

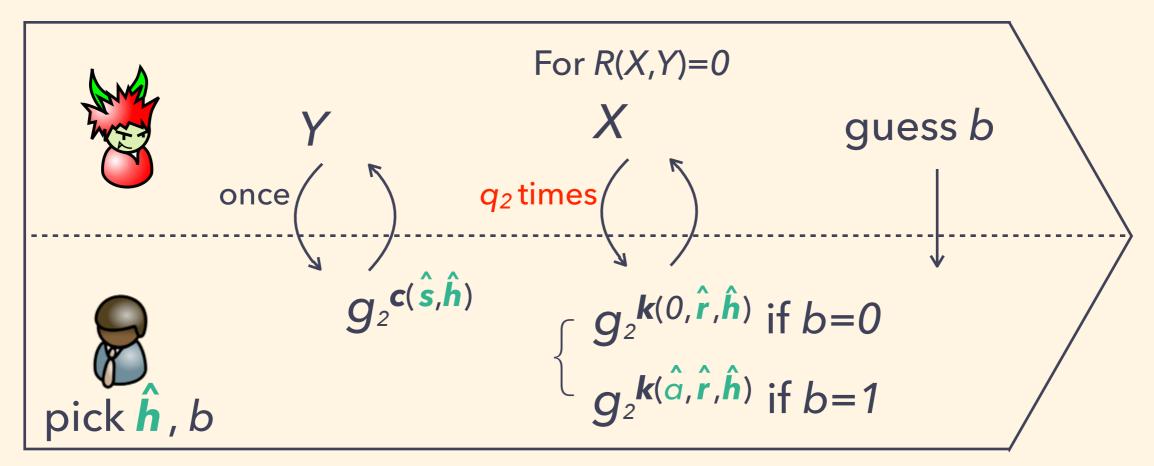


Tighter Security Proof

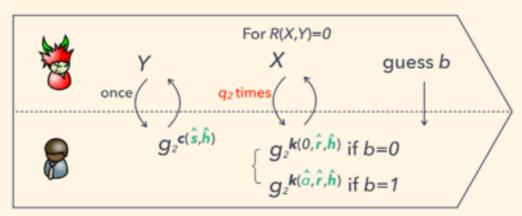


Refining Computationally Security 2

For Transitions of Post-challenge Keys



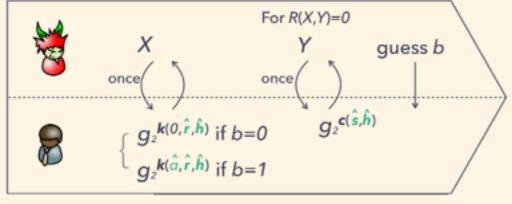
"Doubly Selective Security"



 $Y \rightarrow \text{program } \hat{h} \rightarrow X$

The 2nd notion is called

Selective Master-key Hiding
since the order of queries
mimics selective security of FE
but in semi-functional space.

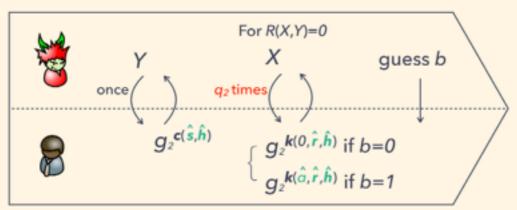


 $X \rightarrow \text{program } \hat{h} \rightarrow Y$

The 1st notion is called

Co-Selective Master-key Hiding since the order of queries mimics co-selective security of FE but in semi-functional space.

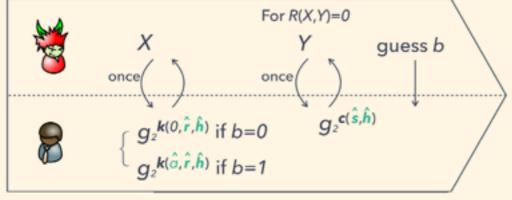
"Doubly Selective Security"



 $Y \rightarrow \text{program } \hat{h} \rightarrow X$

The 2nd notion is called **Selective** Master-key Hiding

Can borrow proof techniques for selective security of FE



 $X \rightarrow \text{program } \hat{h} \rightarrow Y$

The 1st notion is called **Co-Selective** Master-key Hiding

Can borrow proof techniques for co-selective security of FE or selective security of its dual!

3 Instantiations

Fully Secure IBE

Lewko-Waters IBE $h=(h_1,h_2)$ **Our new IBE** $h=(h_1,h_2,h_3)$

$$\mathbf{k} = (a + r(h_1 + h_2 ID), r)$$

$$c = (s, s(h_1 + h_2 ID'))$$

- Encoding is perfect.
 - $f(x)=h_1+h_2x$ is pair-wise independent
- Full security of IBE: $O(q_{all})$ to Subgroup Decision

- $\mathbf{k} = (a+r_1(h_1+h_2ID)+r_2h_3, r_1, r_2)$
- $c=(s, s(h_1+h_2ID'), sh_3)$
- Encoding is perfect.
- Encoding is also selective under 3-party DH.
- Full security of IBE: $O(q_1)$ to Subgroup Decision plus O(1) to 3-party DH

Fully Secure IBE

	Public key	Ciphertext , key	Reduction	Assumption
Waters 05	O(n)	O(1)	O(nq _{all})	DBDH
Gentry 06	O(1)	O(1)	O(1)	q _{all} -ABDHE
Waters 09	O(1)	O(1)	$O(q_{all})$	DBDH,DLIN
Lewko-Waters 10	O(1)	O(1)	$O(q_{all})$	subgroup
Chen-Wee 13	O(n)	O(1)	O(n)	DLIN
Our IBE	O(1)	O(1)	O(q ₁)	3DH, subgroup

n = ID length

FE for Regular Languages

	Security	Reduction	Assumption
Waters 12	selective	O(1)	Q-type
Our FE for regular languages	full	O(q ₁)	Q-type, subgroup

FE for Regular Languages

Selective security of our encoding

- Borrow techniques from selective security of Waters'.
- Hence, use a similar "Q-type" assumption to Waters'.
 - Q is ciphertext attribute size of one query.
 - Q is not the number of queries (q_1,q_2) .

Co-selective security of our encoding

New techniques, new Q-type assumption.

KP-ABE with Short Ciphertext

	Ciphertext size	Key size	Security	Reduction	Assumption
ALibert- Panafieu 11	O(1)	O(tk)	selective	O(1)	Q-type
Takashima 14	O(1)	O(tk)	selective	O(q _{all})	DLIN
Our ABE w/ short ciphertext	O(1)	O(tk)	full	O(q ₁)	Q-type, subgroup

t = max attribute set in ciphertext, k= policy size for key

Unbounded KP-ABE

	Large universe ?	Unbounded attribute repetition?	Security	Reduction	Assumption
Lewko-Waters 11	yes	yes	selective	$O(q_{all})$	subgroup
Lewko-Waters 12	no	yes	full	$O(q_{all})$	Q-type, subgroup
Okamoto- Takashima 12b	yes	no	full	$O(q_{all})$	DLIN
Rouselakis- Waters 13	yes	yes	selective	O(1)	Q-type
Our unbounded ABE	yes	yes	full	O(q ₁)	Q-type, subgroup

More Results

- Generic dual scheme conversion for perfectly-secure encoding.
 - Convert key-policy to ciphertext-policy (& vice versa)
- Fully-secure dual (ciphertext-policy) FE for regular languages.
- Unification of schemes based on dual systems and some improvements.

Take-Home Ideas

- Our framework can be considered as a method for boosting doubly selectively security (of encoding) to fully security (of FE).
- Why does it matters? Proving double selective security of encoding can use techniques from proving classical selective security.

Thank you

Recall the Definitions of Semi-Keys

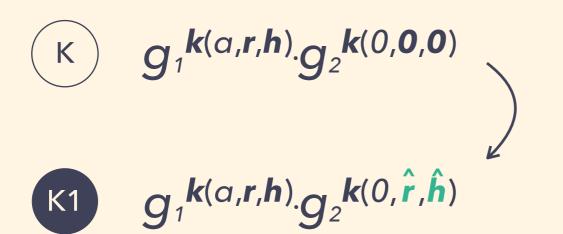
$$\begin{array}{c|c} & g_1^{k(\alpha,r,h)}.g_2^{k(0,0,0)} \\ & & & \end{array} \begin{array}{c} \text{Subgroup Decision} \\ & & \\$$

Proof for the 1st Transition

$$\begin{array}{c|c} & g_1^{k(a,r,h)} g_2^{k(0,0,0)} \\ & & \end{array}$$
 Subgroup Decision
$$g_1^{k(a,r,h)} g_2^{k(0,\hat{r},\hat{h})}$$

Subgroup Decision problem: Decide if $T \in G_1$ or $T \in G_{12}$

Proof for the 1st Transition



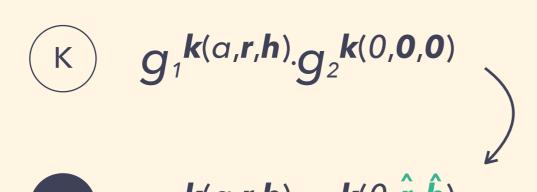
$$g_1^{k(a,r,h')} \cdot (g_1^{t_1})^{k(0,r',h')}$$

$$\int_{0}^{t_1} T$$

$$g_1^{k(a,r,h')} \cdot (g_1^{t_1}g_2^{t_2})^{k(0,r',h')}$$

Subgroup Decision problem: Decide if $T \in G_1$ or $T \in G_{12}$

Proof for the 1st Transition



Simulated by

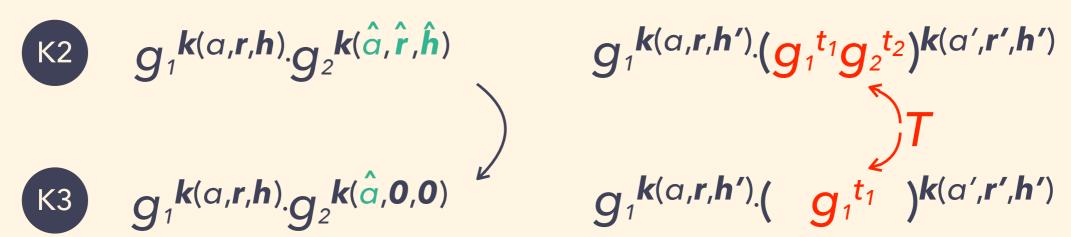
Subgroup Decision problem: Decide if $T \in G_1$ or $T \in G_{12}$

Simulation is OK due to linearity, param-vanishing of k and "parameter-hiding" of G:

h=h' mod p_1 and $\hat{h}=h'$ mod p_2 are independent.

Proof for the 3rd Transition is similar

Simulated by



$$g_1^{k(a,r,h')} \cdot (g_1^{t_1}g_2^{t_2})^{k(a',r',h')}$$

$$\int_{a}^{b} T$$

$$g_1^{k(a,r,h')} \cdot (g_1^{t_1}g_2^{t_2})^{k(a',r',h')}$$