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1 Introduction



Functional Encryption Syntax

FE for predicate R:AxB-+{0,1} or family {Ri}

. Setup(k, 17) —>  PK, MSK

for ciphertext
e Encrypt(Y,M,PK) — CT attribute Y

for k
. KeyGen(X,MSK,PK) —> SK e ° %

. Decrypt(CT,.SK) —> M ifR(X,Y)=1

FE here means the class
"Public-index Predicate Encryption” of FE [BSW11].



Definition of Full Security for FE

% Adversary
X Y, Mo,M guess b
q1times< > once< > Q2t|mes< >
PK SK

8 KeyGen(X) Enc(YMb) KeyGen(X)
Challenger

>

Non-triviality condition: R(X,Y)=0



Definition of Selective Security for FE

% Adversary

Y X Mo, M guess b

q1times< > once< > thlmes< >
V SK

PK

>

g KeyGen(X) Enc(YMb) KeyGen(X)
Challenger

Non-triviality condition: R(X,Y)=0



Approaches for Full Security

Partitioning
 |BE [BB04b, Waters05]

for challenge e Seem not to work with richer FE

ID space

semi-

cnaio- - Dual-System Encryption [Waters09]

normal

=0
&

~~)

0 . Work also with richer FE:
m e ABE [LOSTW10,0T10,LW12,...]

* Inner-product enc[OT12,...]

~~)
~~)
~~)

» Spatial encryption [AL10,...]



Dual System Also Offers Simplicity.

Similar scheme but
in composite-order
bilinear group

An original FE

scheme

Selectively-secure A candidate for
fully-secure scheme



Boneh-Boyen IBE Lewko-Waters IBE

(selectively secure) (fully secure)
CT=(gs’ gs(h1+h21D), e(g’g)asM) CT=(91S, g1s(h1+h21D)’ 9(91,91)GSM)

SK_(ga+r 1+h21D')’ gr) SK—(g a+r(h,+h>ID") 93W1: g 93W2)



Boneh-Boyen IBE Lewko-Waters IBE

(selectively secure) (fully secure)
CT=(gs, gs(h1+h21D)’ e(g,g)asM) CT=(g1s’ g1s(h1+hle)’ 9(91'91)GSM)

SK_(ga+r 1+h2ID’), gr) SK_(g a+r(h;+h,ID’) 93W1, g 93w2)

Abstract Selective Secure FE | Abstract Fully Secure FE ?

CT=(91C($,I1)I 6(9“91)GSM)

SK=g1k(a,r,h).g3w

Apply to any scheme?




Successful Applications

Selective Full

IBE BB04 LW10
ABE GPSW06 LOSTW10
Spatial Encryption BHO8 AL10

Unsuccessful Applications Selective  Full

FE for regular languages Waters12 2
Open

ABE w/ short ciphertexts [WNRZEK ? (oroblem!

Fully-unbounded ABE RW13 ?



We ask:

Why did “traditional” dual systems
fail for some schemes?

How to overcome that barrier?




To systematically answer, we
provide a generic framework.



Our Framework Result

Generic

—

New primitive:

Pair Encoding

Perfectly secure
pair encoding

Computationally
secure encoding

“Doubly selective
security”



Our Framework Result
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Pair Encoding

Perfectly secure

, ! — >  Fully secure FE
pair encoding

Computationally Fully secure FE
[ ] é ( J ( J
secure encoding + tighter reduction

“Doubly selective
security”



Our Framework Result

Genenc
New primitive:

Pair Encoding

Perfectly secure

, ! — >  Fully secure FE
pair encoding

Generalize “traditional” dual-systems, which
implicitly use info-theoretic argument.



Our Framework Result

Generic

—

Generalize Lewko-Waters12 ABE
+ New techniques for tighter reduction.

New primitive:

Pair Encoding

Computationally Fully secure FE
( J é ( J ( J
secure encoding + tighter reduction



A Glance at Pair Encoding

Recall the abstract scheme

CT=(g<=M, e(g1,91)%°*M)
SK=g1k(a,r,h),g3w

Pair encoding consists of ¢( ) and k( ).



Our Answer to Instantiations

Selective  Fully-secure

FE for regular languages Waters12
ABE w/ short ciphertexts FRWARZN
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Our Answer to Instantiations

Selective  Fully-secure

FE for regular languages Waters12
ABE w/ short ciphertexts FRWARZN

Fully-unbounded ABE RW13

!

Why traditional dual systems failed:
(Implicit) encodings were not perfect.




Our Answer to Instantiations

Selective  Fully-secure

FE for regular languages Waters12 New!

ABE w/ short ciphertexts ALP11 New!

Fully-unbounded ABE AR New!

! I

Why traditional dual systems failed: How to overcome:
(Implicit) encodings were not perfect. Use computationally
secure encodings



A Glance at Tighter Reduction

All prior dual-system proofs
(except [Chen-Wee Crypto13])

Game 1
!
w0
1 key/1 game
Game g.; @

Reduction=0(qgan), qai= q1+q2



A Glance at Tighter Reduction

All prior dual-system proofs Our new approach
(except [Chen-Wee Crypto13])

Game 1 1@
|
?
| 1 one big jump!

w0 0 =0

1 key/1 game qfl() ‘!Flﬂ

: g2 keysin 1 game

Game g.; @ Qall

Reduction=0(q.;), qai= 91+q2  Reduction=0(qg;)



Related work on Dual-System Framework

e [Chen-Wee Crypto13]: Dual-system groups

* Unify prime- and composite-order groups but only to
specific predicates (HIBE).

* Ours unifies for any predicate (but specific to
composite-order).

* [Wee TCC14]: Predicate Encoding

* Independently abstracting perfectly secure encoding.



2 Framework



Pair Encoding: Definition

Pair Encoding for predicate R={Ri}«

Encl1(X) — k(a,rh) where r=(rq,...,m)

Enc2(Y) — C(S,h) where $=(S,S1,...,SW)



Pair Encoding: Definition

Pair Encoding for predicate R={R\}«
Param(k) — |h| where h=(h,...,h)
Encl1(X) — k(a,rh) where r=(ry,...,rm)

Enc2(Y) — C(S,h) where $=(S,S1,...,SW)



Pair Encoding: Definition

Pair Encoding for predicate R={Ri}«

Param(k) — |h| where h=(h1,...,hm)
Encl1(X) — k(a,rh) where r=(rq,...,m)
Enc2(Y) —> c(s,h) where $=(5,51,...,Sw)

Pair(X,Y) — E

e Correctness: HRX.Y)=1, BAGCHA N XA NS




Pair Encoding: Definition

Pair Encoding for predicate R={Ri}«

Param(k) — |h| where h=(h1,...,hm)
Encl1(X) — k(a,rh) where r=(rq,...,m)
Enc2(Y) —> c(s,h) where $=(5,51,...,Sw)

Pair(X,Y) — E

e Correctness: HRX.Y)=1, BAGCHA N XA NS

e Security: If R(X,Y)=0, ...to be defined.




Additional Requirements

Parameter-vanishing k(a,0,h) = k(a,0,0)
Linearity fork  k(ay,ri,h)+k(az,rz,h) = kia+az,ri+rz,0)

Linearity for ¢ c(s1+s2,h) = c(sq,h)+c(s2,h)

Linearity implies homogeneity: k(0,0,0)=0, c(0,0)=0



Pair Encoding: Example for IBE

Param —> 2 That is, h=(h1,h>)

Enc1(ID) — k(a,r,h) =( a+r(h;+h,ID), r)

Enc2(ID’) —> c(s,h)

(s, s(hy+hzID’) )

Pair(DID) — E - =( 5

e Correctness If ID=ID’

(axrthrehaD) (N ey ) =93



Composite-order Bilinear Groups

G, Gr of order N=p1p2p3

with bilinear map e: G x G = Gy

have prime-order subgroups G, Go, G3
Orthogonality: e(g;, g;)=1 iff i#]

Subgroup Decision: Decide if TeG; or TeG2



Constructing FE from Pair Encoding

FE for predicate R from Pair encoding for R

Setup —> PK=(g,, g, e(g.,9:)% g;), MSK=a
Encrypt(Y,M,PK) —> CT=(g,<*", e(g,,g:)%M) RZZR=E0D

KeyGen(X,MSK) — SK=gkarh) R, Enc1(X)=k(a,rh)

Decrypt(CT,SK) —> e(g1k(a,r,h)E, g1c(s,h) ‘R3)

— 6(91,91)05 k(a,r.h)E c(s,h)" =as



Security Proof of Our Framework



Semi-functional Ciphertexts/Keys

Can Be Defined in Terms of Pair Encoding Scheme

d g1c(s,h). 92c:(0,0)=0
TI a g1c(s,h)gzc( g,ﬁ)

e(g+,9:) unmodified

Q
=
Q
g
=

Q

N
oy
Q>
- >
3>

Each randomness except “semi-param”h is fresh for each.



Semi-functional Ciphertexts/Keys

Can Be Defined in Terms of Pair Encoding Scheme

d @gf:(s,h). 2c:(O,O)=0
Tlﬁ e 91 sh gll;

e(g.,g:)?° unmodified

Each randomness except “semi-param”h is fresh for each.



Recall Definition for Full Security

Y,Mo,M;

%A X X
SRNONG

guess b

<€

PK
8 KeyGen(X) Enc(Y M) KeyGen(X)



Recall Definition for Full Security

Notation in timeline

00 00000 OO0
Y,Mo,M

%A X X
SRNONNG

guess b

<€

q1 q2
PK

8 KeyGen(X) Enc(Y M) KeyGen(X)



Aim of the Proof

Real game: all normal

|
|

Final game: all semi-functional




Final Game

Adversary will have no advantage.

Intuition: decryption contains random e(gz,gz)a’g




Game Sequence in the Proof




Game Sequence in the Proof

00 00:-00 00

)




Game Sequence in the Proof

00 00000 00 )
00 00-00 00
Q@ Q00 00 00 /




Game Sequence in the Proof

00 00:-00 00

<@ 00 - 00 00
el 90 <00 00

" N S



Game Sequence in the Proof

00 00:-00 00

<@ 00 - 00 00
el 90 <00 00

N " N S




Game Subsequence

> Subgroup Decision

Indistinguishability based on

> Security of encoding

> Subgroup Decision




Game Subsequence

Indistinguishability based on

- > Subgroup Decision «

> Security of encoding

> Subgroup Decision «

Intuition: These two do not depend on encoding.
Use linearity, param-vanishing of k and orthogonality of G.



Game Subsequence

> Subgroup Decision

> Security of encoding «

Indistinguishability based on

> Subgroup Decision




The 2nd Transition

kia,r,h) ~ k(O,r,h)

g:
> Security of encoding

® g orhgkarh (to be defined)



The 2nd Transition

k(O,r,h)

> Security of encoding
@ ka(a"'h)-gzk(a';'ﬁ) (to be defined)

Idea: just define security of encoding to be exactly
the indistinguishability of these two games!



The 2nd Transition

In More Details

A |

» "Isolating” all other keys.



Defining Security of Encoding

Computationally secure encoding

c(s,
% { gzk(a,?,ﬁ) 9:

Cannot
distinguish




Defining Security of Encoding

Perfectly secure encoding

|dentical { k(0,

(info-theoretic)

c(s,
% { gzk(a,ﬁ,ﬁ) 9:

Cannot
distinguish




Defining Security of Encoding

Perfectly secure encoding

= >

Identical { k(O, 1. h) c( ;Ii;)
)

(info-theoretic k(a, ;, II;)

Computationally secure encoding

c(s,
% { gzk(a,ﬁ,ﬁ) 9:

Cannot
distinguish

1st flavor: k before ¢

2nd flavor: ¢ before k



Computationally Security 1: k before c




Computationally Security 1: k before c

For Transitions of Pre-challenge Keys




Computationally Security 2: c before k

For R(X,Y)=0
Y X guess b




Computationally Security 2: c before k

For Transitions of Post-challenge Keys




Tighter Security Proof

00 0 0
: D} O(q1)

BEOOCE Y -
: } O(q2) > O(1)

/

K3 K3 C K3 | e K3 D




Refining Computationally Security 2

For Transitions of Post-challenge Keys




“Doubly Selective Security”

The 2nd notion is called
Selective Master-key Hiding
since the order of queries
mimics selective security of FE
but in semi-functional space.

..... .y

8 g5 gMO.Th) if b=0

Lg"( r.h) if b=1

Y—=program h— X

ror R0 The 1st notion is called

..... g)&)(y>g[b Co-Selective I\/Iaster-key Hiding
| o since the order of queries

mimics co-selective security of

FE but in semi-functional space.

X—program h- Y



“Doubly Selective Security”

% —— The 2nd notion is called
X uess b . . .
.................. E)()gl Selective Master-key Hiding

8 g}ds.h) { gzk(O,;,l::) if b=0
gKarh) if p=1

Can borrow proof techniques

Y—=program h— X for selective security of FE

The 1st notion is called
Co-Selective Master-key Hiding

For R(X,Y)=0

§ X Y guess b
once< > once< > 1

z - gMOTh) if =0 g:Ash)

g oy Can borrow proof techniques
X—program h— Y for co-selective security of FE
or selective security of its dual!




3 Instantiations



Fully Secure IBE

Lewko-Waters IBE h=(h;,h,) Our new IBE h=(h{,h,,h3)

k=(a+r(h;+h2ID), r) k=(a+ri(h;+h2ID)+rsh3, rq, )
C=(S, S(h1+h21D')) C=(S, S(h1+hle'), Sh3)
* Encoding is perfect. * Encoding is perfect.

* f(x)=hi+hyx is pair-wise ¢ Encoding is also selective
independent under 3-party DH.

* Full security of IBE: O(qg.y) < Full security of IBE: O(qg/)
to Subgroup Decision to Subgroup Decision
plus O(7) to 3-party DH



Fully Secure IBE

|Ciphertext|,

Reduction Assumption
|keyl

|Public key|

Waters 05 DBDH

Gentry 06 O(1) O(1) O(1) ga-ABDHE
Waters 09 O(1) O(1) O(qan) DBDH,DLIN
"e""k‘;'xvaters o(1) o(1) O(g.)  subgroup
Chen-Wee 13 O(n) O(1) O(n) DLIN
Our IBE o(1) o(1) O(g1) N ss:')'up

n = ID length



FE for Regular Languages

Security Reduction Assumption

Waters 12 selective

O(71)

O-
Our FE for regular full o)) type,

subgroup

languages



FE for Regular Languages

Selective security of our encoding
* Borrow techniques from selective security of Waters'.
* Hence, use a similar “Q-type” assumption to Waters'.
* Qs ciphertext attribute size of one query.

* Qs not the number of queries (g1,92).

Co-selective security of our encoding

* New techniques, new Q-type assumption.



KP-ABE with Short Ciphertext

Ciphertext

size Key size Security Reduction Assumption

A.-Libert-

Panafiey 11 O(1) O(tk) selective O(1) Q-type
Takashima 14 O(1) O(tk) selective O(qan) DLIN
Our ABE w/ Q-type,
short ciphertext o) Ott) full Olan) subgroup

t = max attribute set in ciphertext, k= policy size for key



Unbounded KP-ABE

Unbounded
attribute Security  Reduction Assumption

Large

universe ? 0
repetition?

Lewko-Waters

11 yes yes selective O(qan) subgroup
Lewko-Waters Aioe,
full i
Uz ﬂO /e - Olqan) subgroup
Okamoto-
Takashima 12b yes no full O(qan) DLIN
Rouselakis- |
Waters 13 yes yes selective O(1) Q-type
Q-t
Our unbounded yes Jes ol o) -

ABE subgroup



More Results

* Generic dual scheme conversion for perfectly-secure
encoding.

* Convert key-policy to ciphertext-policy (& vice versa)

* Fully-secure dual (ciphertext-policy) FE for regular
languages.

* Unification of schemes based on dual systems and
some improvements.



Take-Home Ildeas

* Our framework can be considered as a method for
boosting doubly selectively security (of encoding) to
fully security (of FE).

 Why does it matters? Proving double selective security
of encoding can use techniques from proving classical
selective security.



Thank you



Recall the Definitions of Semi-Keys

@ g.ka.rh). g k(0,0,0)
> Subgroup Decision

@ g1k(a,r,h).gzk(0,r,h)
> Security of encoding

@ g karh) g k(a,r,h)
> Subgroup Decision
)

k(a,r,h)gzk(a,o,o



Proof for the 1st Transition

@ g.ka.rh). g k(0,0,0)
> Subgroup Decision

@ g1k(a,r,h).gzk(0,r,h)

Subgroup Decision problem: Decide if TeG; or TeG>



Proof for the 1st Transition
Simulated by

@ g1k(a,r,h).gzk(0,0,0) g1k(a,r,h’).( g1t1 )k(O,r’,h’)
> N

JT
@ g1k(a,r,h)gzk(o,?,l§) g1k(a,r,h:),(g1t192t2)k(0,r:,h,)

Subgroup Decision problem: Decide if TeG; or TeG>



Proof for the 1st Transition
Simulated by

@ g1k(a,r,h)gzk(0,0,0) g1k(a,r,h’).( g1t1 )k(O,r’,h’)
) o7

@ g1k(a,r,h)gzk(o,?,l§) g1k(a,r,h:),(g1t192t2)k(0,r:,h,)

Subgroup Decision problem: Decide if TeG; or TeG>

Simulation is OK due to linearity, param-vanishing of k and

"parameter-hiding” of G:

h=h’ mod p; and h=h’ mod p2 are independent.




Proof for the 3rd Transition is similar

Simulated by

1k(a,r,h’).( g 1t1 92t2 )k(a’,r’,h’)
T

g1t1 )k(a T ,h )

g

g 1k(a,r,h’).(




