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Problem statement

Evaluation / certification of leaking devices
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• We currently lack formal approaches to “prove” 
the security of cryptographic implementations
• Despite progresses in leakage-resilience

• The secure smart cards in your pockets usually go 
through the process of evaluation/certification

• i.e. they are sent to a lab for evaluation and 
come back with a “security stamp” (A,B,C, …)

• This talk is about how to perform evaluations
=> Quantified levels rather than hard to interpret letters
( compute the ᇱs in proofs of leakage-resilience)
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• Ideally, we should consider worst-case attacks

• But side-channel attacks rely on hypotheses 
• on the target piece of key (useful)
• and on the leakage model (useless)

=> Worst-case evaluations require a perfect model

• Problem: such a (physical) model is unknown!

• This talk: how good is my leakage model?
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• Good news: side-channel attacks need a model
• i.e. an estimation of the leakage distribution



Background: EC09 framework [1] 4

• Main idea: estimate the mutual information from 
the “best available” model (practical worst case)



Definition 5

• Information leakage on the secret key

• where ௗ is obtained by profiling
• and  is unknown but can be sampled 
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Two cases can happen [2] 6

• Case #1 (ideal): perfect profiling phase
• ௗ = 

• Case #2 (actual): bounded profiling phase
• ௗ 

	MIሺK;Lሻ	ൌ	H ܭ െPr ݇ Pr	 ݈ ݇


	 . logଶ	Pr	 ݇ ݈

	PI ሺK;Lሻ	ൌ	H ܭ െPr ݇ Pr	 ݈ ݇


	 . logଶ	Prௗ	 ݇ ݈
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Evaluation problem statement 7

• What is the distance between the MI and the PI?
(i.e. how good is my leakage model?)

• Difficult since the leakage function is unknown 
=> Impossible to compute this distance directly!

• Our result: we show that indirect approaches allow 
answering the question quite rigorously

• Main idea: quantify the different model errors!



First question: estimation errors

Has my model converged?
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• Split traces in 10 (non-overlapping) sets, use 
9/10th for profiling, 1/10th for estimating the PI

• Repeat 10 times to get average & spread

• Example of models

• Gaussian templates: estimate one Gaussian 
distribution per value of xi o ki

• Linear regression: approximate L(xi,ki) with a 
linear combination of basis elements
• e.g. the S-box input & output bits 
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Cross-validation results 9

time sample #1 time sample #2

• All models have converged after ~50,000 traces

Summarizing: estimation errors can be 
made arbitrarily small by measuring more

=> assumption errors more damaging!



Second question: assumption errors

Is my model good enough?
(PART I: conditioned on the # of measurements) 
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Step a. Detecting assumption errors 10

• Fact: two multidimensional distributions F and G
are equal if the variables X~F and Y~G generate 
identical distributions for the distance D(.,.)

• We can compute the simulated distance

• And the sampled distance

• And test their CvM divergence

௦݂ ݀ ൌ Pr ଵܮ െ ଶܮ  ݀	 ,ଵܮ Prௗሿ	~	ଶܮ

ො݃ே ݀ ൌ Pr ݈ଵ െ ݈ଶ  ݀	 ݈ଵ
ே
⇐Prௗ, ݈ଶ 	

ே
⇐Prሿ

CvM ሺ ௦݂, ො݃ே) =  ௦݂ ݔ െ ො݃ே ݔ ݔ²݀
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• Are these models already saturating?
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• Goal: try to detect when assumption errors 
become significant in front of estimation ones

• Characterize the probability that a given model 
error can be explained by estimation issues

p-value 
(hyp. incorrect model)

CvM	ሺ ௦݂, ො݃ே) 
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Gaussian templates Linear regression

=> Gaussian templates are good enough with up    
to 256,000 traces in the cross-validation set



Second question: assumption errors

Is my model good enough?
(PART II: independent of the # of measurements) 
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• Say we do measure up to the point where we 
detect assumption errors for all our models

• Can we bound the MI – PI difference?

• Attempt: for Nth such that the assumption errors 
are not significant in front of estimation errors, try 
to “bound” the information loss by quantifying the 
(easier to compute) estimation error

• Hope: assumption errors that are detected for 
smaller Nth’s should be larger in some sense
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• Mathematically generated leakages analyzed with 
LR (9-element basis) for different noise levels

• Bound too pessimistic for large noise levels
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• The threshold for which assumption errors are 
detected (e.g. average p-value) is hard to set 
independent of the leakage distributions

• Information bounds anyway become pessimistic as 
the noise increases (since the noise then 
dominates the assumption errors in the MSE)

There could be more positive results for certain 
distributions (scope for further research), meanwhile…
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• For a fixed number of measurements
(which is the case of all real-world evaluations)

• If assumption errors are detected: the loss of 
information due to an imprecise model is 
significant (i.e. the model can be improved)

• If assumption errors are not detected: improving 
the model would not lead to better information 
extraction (since this improvement could not be 
distinguished due to the estimation errors)

• All bets are of if more measurements are taken…
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• Given a leakage model, it is pretty straightforward 
to compute security metrics (success probability) 

• Closer to the ’s in proofs of leakage-resilience
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Conclusions 19

Main message:

• Strict bounds on the information leakage are hard 
to obtain in general (independent of the 
distributions and number of measurements)

• But given a number of measurements, we can be 
sure that a model is “good enough” (or not)

• Quite general problem (not limited to side-channel 
attacks): applies to any attempt to model an 
unknown physical or biological process 
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