How to Certify the Leakage of a Chip?

F. Durvaux, *F.-X. Standaert*, N. Veyrat-Charvillon UCL Crypto Group, Belgium EUROCRYPT 2014, Copenhagen, Denmark

Problem statement

Evaluation / certification of leaking devices

Motivation

- We currently lack formal approaches to "prove" the security of cryptographic implementations
 - Despite progresses in leakage-resilience

- We currently lack formal approaches to "prove" the security of cryptographic implementations
 Despite progresses in leakage-resilience
- The secure smart cards in your pockets usually go through the process of evaluation/certification
 - i.e. they are sent to a lab for evaluation and come back with a "security stamp" (A,B,C, ...)

- We currently lack formal approaches to "prove" the security of cryptographic implementations
 - Despite progresses in leakage-resilience
- The secure smart cards in your pockets usually go through the process of evaluation/certification
 - i.e. they are sent to a lab for evaluation and come back with a "security stamp" (A,B,C, ...)
- This talk is about how to perform evaluations
 => Quantified levels rather than hard to interpret letters
 (≈ compute the ε's in proofs of leakage-resilience)

Side-channel attacks

time samples

executed operations

Side-channel attacks

time samples

executed operations

• Ideally, we should consider worst-case attacks

- Ideally, we should consider worst-case attacks
- But side-channel attacks rely on hypotheses
 - on the target piece of key (*useful*)
 - and on the leakage model (useless)

- Ideally, we should consider worst-case attacks
- But side-channel attacks rely on hypotheses
 on the target piece of key (*useful*)
 and on the leakage model (*useless*)
- => Worst-case evaluations require a *perfect* model

- Ideally, we should consider worst-case attacks
- But side-channel attacks rely on hypotheses
 on the target piece of key (*useful*)
 and on the leakage model (*useless*)
- => Worst-case evaluations require a *perfect* model
- Problem: such a (*physical*) model is unknown!

- Ideally, we should consider worst-case attacks
- But side-channel attacks rely on hypotheses
 on the target piece of key (*useful*)
 and on the leakage model (*useless*)
- => Worst-case evaluations require a *perfect* model
- Problem: such a (*physical*) model is unknown!
- This talk: how good is my leakage model?

 Problem: estimating (e.g.) the mutual information between arbitrary distributions is notoriously hard!

- Good news: side-channel attacks need a model
 - i.e. an estimation of the leakage distribution

• Main idea: estimate the mutual information from the "best available" model (*practical worst case*)

• Information leakage on the secret key

$$H[K] - \sum_{k} \Pr[k] \sum_{l} \Pr_{chip} \left[l | k \right] . \log_2 \widehat{\Pr}_{model} \left[k | l \right]$$

- where $\widehat{\Pr}_{model}[k|l]$ is obtained by profiling
- and $\Pr_{chip}[l|k]$ is unknown but can be sampled

Two cases can happen [2]

- Case #1 (ideal): perfect profiling phase
- i.e. $\widehat{\Pr}_{model} [l|k] = \Pr_{chip} [l|k]$

$$\widehat{\mathrm{MI}}(K;L) = \mathrm{H}[K] - \sum_{k} \mathrm{Pr}[k] \sum_{l} \mathrm{Pr}_{chip} \left[l|k\right] . \log_2 \mathrm{Pr}_{chip} \left[k|l\right]$$

- Case #1 (ideal): perfect profiling phase
- i.e. $\widehat{\Pr}_{model} [l|k] = \Pr_{chip} [l|k]$

$$\widehat{\mathrm{MI}}(K;L) = \mathrm{H}[K] - \sum_{k} \Pr[k] \sum_{l} \Pr_{chip} \left[l|k\right] \cdot \log_2 \Pr_{chip} \left[k|l\right]$$

- Case #2 (actual): bounded profiling phase
- i.e. $\widehat{\Pr}_{model}[l|k] \neq \Pr_{chip}[l|k]$

$$\widehat{PI}(K;L) = H[K] - \sum_{k} \Pr[k] \sum_{l} \Pr_{chip} [l|k] . \log_2 \widehat{\Pr}_{model} [k|l]$$

• What is the distance between the MI and the PI? (i.e. *how good is my leakage model*?)

- What is the distance between the MI and the PI?
 (i.e. how good is my leakage model?)
- Difficult since the leakage function is unknown
 => Impossible to compute this distance directly!

- What is the distance between the MI and the PI? (i.e. how good is my leakage model?)
- Difficult since the leakage function is unknown
 => Impossible to compute this distance directly!

• Our result: we show that indirect approaches allow answering the question quite rigorously

- What is the distance between the MI and the PI? (i.e. how good is my leakage model?)
- Difficult since the leakage function is unknown
 => Impossible to compute this distance directly!

- Our result: we show that indirect approaches allow answering the question quite rigorously
- Main idea: quantify the different model errors!

First question: estimation errors

Has my model converged?

Cross-validation

- Split traces in 10 (non-overlapping) sets, use 9/10th for profiling, 1/10th for estimating the PI
- Repeat 10 times to get average & spread

- Split traces in 10 (non-overlapping) sets, use
 9/10th for profiling, 1/10th for estimating the PI
- Repeat 10 times to get average & spread
- Example of models
 - Gaussian templates: estimate one Gaussian distribution per value of $x_i \oplus k_i$
 - Linear regression: approximate L(xi,ki) with a linear combination of basis elements
 - e.g. the S-box input & output bits

Gaussian templates more informative for t1

Linear basis with S-box output bits sufficient for t2

Estimation of Gaussian templates more expensive

All models have converged after ~50,000 traces

All models have converged after ~50,000 traces

Second question: assumption errors

Is my model good enough?

(PART I: conditioned on the # of measurements)

• Fact: two multidimensional distributions \mathcal{F} and \mathcal{G} are equal if the variables X~ \mathcal{F} and Y~ \mathcal{G} generate identical distributions for the distance D(.,.)

- Fact: two multidimensional distributions \mathcal{F} and \mathcal{G} are equal if the variables X~ \mathcal{F} and Y~ \mathcal{G} generate identical distributions for the distance D(.,.)
- We can compute the simulated distance

$$f_{sim}(d) = \Pr[L_1 - L_2 \le d \mid L_1, L_2 \sim \widehat{\Pr}_{model}]$$

- Fact: two multidimensional distributions *f* and *G* are equal if the variables X~*f* and Y~*G* generate identical distributions for the distance D(.,.)
- We can compute the simulated distance

$$f_{sim}(d) = \Pr[L_1 - L_2 \le d \mid L_1, L_2 \sim \widehat{\Pr}_{model}]$$

• And the sampled distance $\hat{g}_N(d) = \Pr[l_1 - l_2 \le d \mid l_1 \stackrel{N}{\leftarrow} \widehat{\Pr}_{model}, l_2 \stackrel{N}{\leftarrow} \Pr_{chip}]$

- Fact: two multidimensional distributions \mathcal{F} and \mathcal{G} are equal if the variables X~ \mathcal{F} and Y~ \mathcal{G} generate identical distributions for the distance D(.,.)
- We can compute the simulated distance

$$f_{sim}(d) = \Pr[L_1 - L_2 \le d \mid L_1, L_2 \sim \widehat{\Pr}_{model}]$$

- And the sampled distance $\hat{g}_N(d) = \Pr[l_1 - l_2 \le d \mid l_1 \stackrel{N}{\leftarrow} \widehat{\Pr_{model}}, l_2 \stackrel{N}{\leftarrow} \Pr_{chip}]$
- And test their CvM divergence

 $\widehat{\text{CvM}}(f_{sim}, \widehat{g}_N) = \int [f_{sim}(x) - \widehat{g}_N(x)]^2 dx$

With cross-validation again, we obtain

With cross-validation again, we obtain

Any incorrect assumption => CvM saturates

With cross-validation again, we obtain

• Are these models already saturating?

Step b. Estimation vs. assumption errors 12

• Goal: try to detect when assumption errors become significant in front of estimation ones

Step b. Estimation vs. assumption errors 12

- Goal: try to detect when assumption errors become significant in front of estimation ones
 - Characterize the probability that a given model error can be explained by estimation issues

Step b. Estimation vs. assumption errors 12

- Goal: try to detect when assumption errors become significant in front of estimation ones
 - Characterize the probability that a given model error can be explained by estimation issues

Comparison of models

Gaussian templates

Linear regression

Comparison of models

Gaussian templates

Linear regression

=> Gaussian templates are good enough with up to 256,000 traces in the cross-validation set

Second question: assumption errors

Is my model good enough?

(PART II: independent of the # of measurements)

Towards leakage bounds?

- Say we do measure up to the point where we detect assumption errors for all our models
- Can we bound the MI PI difference?

Towards leakage bounds?

- Say we do measure up to the point where we detect assumption errors for all our models
- Can we bound the MI PI difference?
- Attempt: for Nth such that the assumption errors are not significant in front of estimation errors, try to "bound" the information loss by quantifying the (easier to compute) estimation error

Towards leakage bounds?

- Say we do measure up to the point where we detect assumption errors for all our models
- Can we bound the MI PI difference?
- Attempt: for Nth such that the assumption errors are not significant in front of estimation errors, try to "bound" the information loss by quantifying the (easier to compute) estimation error
 - Hope: assumption errors that are detected for smaller Nth's should be larger in some sense

So far: counterexamples

• Mathematically generated leakages analyzed with LR (9-element basis) for different noise levels

So far: counterexamples

 Mathematically generated leakages analyzed with LR (9-element basis) for different noise levels

Bound too optimistic for low noise levels

So far: counterexamples

 Mathematically generated leakages analyzed with LR (9-element basis) for different noise levels

• Bound too pessimistic for large noise levels

Main issues with such bounds

• The threshold for which assumption errors are detected (e.g. average p-value) is hard to set independent of the leakage distributions

Main issues with such bounds

- The threshold for which assumption errors are detected (e.g. average p-value) is hard to set independent of the leakage distributions
- Information bounds anyway become pessimistic as the noise increases (since the noise then dominates the assumption errors in the MSE)

Main issues with such bounds

- The threshold for which assumption errors are detected (e.g. average p-value) is hard to set independent of the leakage distributions
- Information bounds anyway become pessimistic as the noise increases (since the noise then dominates the assumption errors in the MSE)

There could be more positive results for certain distributions (*scope for further research*), meanwhile...

• For a fixed number of measurements (which is the case of all real-world evaluations)

- For a fixed number of measurements (which is the case of all real-world evaluations)
 - *If assumption errors are detected*: the loss of information due to an imprecise model is significant (i.e. the model can be improved)

- For a fixed number of measurements (which is the case of all real-world evaluations)
 - If assumption errors are detected: the loss of information due to an imprecise model is significant (i.e. the model can be improved)
 - If assumption errors are not detected: improving the model would not lead to better information extraction (since this improvement could not be distinguished due to the estimation errors)

- For a fixed number of measurements
 (which is the case of all real-world evaluations)
 - If assumption errors are detected: the loss of information due to an imprecise model is significant (i.e. the model can be improved)
 - If assumption errors are not detected: improving the model would not lead to better information extraction (since this improvement could not be distinguished due to the estimation errors)
- All bets are of if more measurements are taken...

Note: also applies to security metrics [3] 18

• Given a leakage model, it is pretty straightforward to compute security metrics (success probability)

Note: also applies to security metrics [3] 18

• Given a leakage model, it is pretty straightforward to compute security metrics (success probability)

Note: also applies to security metrics [3] 18

• Given a leakage model, it is pretty straightforward to compute security metrics (success probability)

• Closer to the ε 's in proofs of leakage-resilience

Main message:

- Strict bounds on the information leakage are hard to obtain in general (independent of the distributions and number of measurements)
- But given a number of measurements, we can be sure that a model is "good enough" (or not)

Main message:

- Strict bounds on the information leakage are hard to obtain in general (independent of the distributions and number of measurements)
- But given a number of measurements, we can be sure that a model is "good enough" (or not)
- Quite general problem (not limited to side-channel attacks): applies to any attempt to model an unknown physical or biological process

THANKS http://perso.uclouvain.be/fstandae/

1. F.-X. Standaert, T.G. Malkin, M. Yung, *A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks*, in the proceedings of Eurocrypt 2009, Lecture Notes in Computer Science, vol 5479, pp 443-461, Cologne, Germany, April 2009, Springer.

2. M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, D. Flandre, *A Formal Study of Power Variability Issues and Side-Channel Attacks for Nanoscale Devices*, in the proceedings of Eurocrypt 2011, Lecture Notes in Computer Science, vol 6632, pp 109-128, Tallinn, Estonia, May 2011, Springer.

3. N. Veyrat-Charvillon, B. Gerard, F.-X. Standaert, *Security Evaluations Beyond Computing Power: How to Analyze Side-Channel Attacks you Cannot Mount?*, to appear in the proceedings of Eurocrypt 2013, Lecture Notes in Computer Science, vol 7881, pp 126-141, Athens, Greece, May 2013, Springer.