Higher Order Masking of Look-up Tables

Jean-Sébastien Coron

University of Luxembourg

EUROCRYPT, 2014-05-14

Side-channel Attacks

Differential Power Analysis [KJJ99]

Masking Countermeasure

- Let x be some variable in a block-cipher.
- Masking countermeasure: generate a random r, and manipulate the masked value x'

$$x' = x \oplus r$$

instead of x.

- r is random $\Rightarrow x'$ is random
 - \Rightarrow power consumption of x' is random

 \Rightarrow no information about x is leaked

Masking Countermeasure

- How do we compute with $x' = x \oplus r$ instead of x?
- Linear operation f(x) (e.g. MixColumns in AES): easy

$$f(x') = f(x) \oplus f(r)$$

- We compute f(x') and f(r) separately.
- f(x) is now masked with f(r) instead of r.
- Non-linear operations (SBOX): randomized table [CJRR99]

Randomized Table Countermeasure [CJRR99]

Original table in ROM

 $I(u) = S(u \oplus r) \oplus s$ Randomized table in RAM

Randomized Table Countermeasure [CJRR99]

Second-order Attack

Second-order attack:

• Requires more curves but can be practical

Higher-order masking

• Solution: *n* shares instead of 2:

$$x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

- ullet Any subset of n-1 shares is uniformly and independently distributed
 - If we probe at most n-1 shares x_i , we learn nothing about $x \Rightarrow$ secure against a DPA attack of order n-1.
- · Linear operations: still easy
 - Compute the $f(x_i)$ separately

$$f(x) = f(x_1) \oplus f(x_2) \oplus \cdots \oplus f(x_n)$$

Higher-order computation of SBoxes

- SBox computation ?
 - We have input shares x_1, \ldots, x_n , with

$$x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

• We must output shares y_1, \ldots, y_n , such that

$$S(x) = y_1 \oplus y_2 \oplus \cdots \oplus y_n$$

- without leaking information about x.
- This talk: first generalization of the previous randomized table countermeasure to n shares.

Existing Higher Order Countermeasure

- Ishai-Sahai-Wagner private circuit [ISW03]
 - Shows how to transform any boolean circuit C into a circuit of size $\mathcal{O}(|C| \cdot t^2)$ perfectly secure against t probes.
- Rivain-Prouff (CHES 2010) countermeasure for AES:

$$S(x)=x^{254}\in\mathbb{F}_{2^8}$$

• Secure multiplication based on [ISW03]:

$$z = xy = \left(\bigoplus_{i=1}^{n} x_i\right) \cdot \left(\bigoplus_{i=1}^{n} y_i\right) = \bigoplus_{1 \le i, j \le n} x_i y_j$$

• Provably secure against t-th order DPA with $n \geq 2t + 1$ shares

Existing Higher Order Countermeasures

- Carlet et al. (FSE 2012) countermeasure for any Sbox.
 - Lagrange interpolation

$$S(x) = \sum_{i=0}^{2^k - 1} \alpha_i \cdot x^i$$

over \mathbb{F}_{2^k} , for constant coefficients $\alpha_i \in \mathbb{F}_{2^k}$.

- This talk: alternative to Rivain-Prouff and Carlet et al. countermeasures
 - Generalization of the classical randomized table countermeasure.
 - No field operations, only table recomputation.

Existing Higher Order Countermeasures

- Carlet et al. (FSE 2012) countermeasure for any Sbox.
 - Lagrange interpolation

$$S(x) = \sum_{i=0}^{2^k - 1} \alpha_i \cdot x^i$$

over \mathbb{F}_{2^k} , for constant coefficients $\alpha_i \in \mathbb{F}_{2^k}$.

- This talk: alternative to Rivain-Prouff and Carlet et al. countermeasures
 - Generalization of the classical randomized table countermeasure.
 - No field operations, only table recomputation.

Randomized Table Countermeasure [CJRR99]

Original table in ROM

 $I(u) = S(u \oplus r) \oplus s$ Randomized table in RAM

Randomized Table Countermeasure [CJRR99]

First attempt: Schramm and Paar countermeasure [SP06]

$$x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

$$S(0)$$

$$\vdots$$

$$x_1\text{-shift}$$

$$\vdots$$

$$s_1\text{-mask}$$

$$\vdots$$

$$s_2\text{-mask}$$

$$\vdots$$

$$s_{i}\text{-mask}$$

$$\vdots$$

$$s_{i}\text{-mask}$$

$$\vdots$$

$$s_{i}\text{-mask}$$

$$\vdots$$

$$s_{i}\text{-mask}$$

$$\vdots$$

$$S(u)$$

$$S(u) \oplus x_1 \oplus s_1$$

$$S(u \oplus x_1 \oplus x_2) \oplus s_1 \oplus s_2$$
Original table

$$x_n = x \oplus x_1 \oplus \cdots \oplus x_{n-1} \rightarrow T(x_n) = S(x) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

$$T(u) = S(u \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

First attempt: Schramm and Paar countermeasure [SP06]

$$x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

$$S(0)$$

$$\vdots$$

$$S(FF)$$

$$S(u)$$

$$S(u \oplus x_1) \oplus s_1$$

$$S(u \oplus x_1 \oplus x_2) \oplus s_1 \oplus s_2$$
Original table

$$x_n = x \oplus x_1 \oplus \cdots \oplus x_{n-1} \rightarrow T(x_n) = S(x) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

$$T(u) = S(u \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

First attempt: Schramm and Paar countermeasure [SP06]

$$x = x_1 \oplus x_2 \oplus \cdots \oplus x_n$$

$$S(0)$$

$$\vdots$$

$$x_1\text{-shift}$$

$$\vdots$$

$$s_1\text{-mask}$$

$$\vdots$$

$$s_2\text{-mask}$$

$$\vdots$$

$$s_i\text{-mask}$$

$$\vdots$$

$$x_n = x \oplus x_1 \oplus \cdots \oplus x_{n-1} \rightarrow T(x_n)$$

$$= S(x) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

 $T(u) = S(u \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus s_1 \oplus \cdots \oplus s_{n-1}$

Third-order Attack for any *n*

Final randomized table:

$$T(0) = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

$$T(1) = S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

$$\vdots$$

$$S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$
only depends on $x_1 \oplus \cdots \oplus x_{n-1}$,
also probe $x_n \Rightarrow 3rd$ order attack.

- For high-order countermeasures, do not reuse the same masks multiple times!
 - Using the same mask r is OK only for first-order countermeasures.

Third-order Attack for any *n*

Final randomized table:

$$T(0) = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

$$T(1) = S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

$$= S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus x_1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus x_1 \oplus x_1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\vdots = S(0 \oplus x_1 \oplus$$

- For high-order countermeasures, do not reuse the same masks multiple times!
 - Using the same mask r is OK only for first-order countermeasures.

Third-order Attack for any *n*

Final randomized table:

$$T(0) = S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

$$T(1) = S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus s_1 \oplus \cdots \oplus s_{n-1}$$

$$= S(0 \oplus x_1 \oplus \cdots \oplus x_{n-1}) \oplus S(1 \oplus x_1 \oplus \cdots \oplus x_{n-1})$$

$$\text{only depends on } x_1 \oplus \cdots \oplus x_{n-1},$$

$$\text{also probe } x_n \Rightarrow \text{3rd order attack}.$$

- For high-order countermeasures, do not reuse the same masks multiple times!
 - Using the same mask r is OK only for first-order countermeasures.

New Countermeasure

- This talk: new countermeasure for SBOXes, secure against higher-order attacks:
 - Variant of Schramm and Paar countermeasure
 - but use different masks for every line of the Sbox
 - and refresh the masks between successive shifts of the table.
- Provably secure against t-th order DPA, in the ISW model, with $n \ge 2t + 1$ shares.
 - Alternative to Rivain-Prouff and Carlet et al. countermeasures based on finite-fields operations.

Initial table with *n* shares

• Every line of the SBox is initially randomly shared among *n* shares, independently for every line.

$$\begin{array}{c|c}
(s_{00,1}, \dots, s_{00,n}) & S(00) \\
\vdots & & \\
(s_{u,1}, \dots, s_{u,n}) & S(u) \\
\vdots & & \\
(s_{FF,1}, \dots, s_{FF,n}) & S(FF)
\end{array}$$

Original shared table

- Equivalent to having *n* randomized tables instead of 1.
- The lines of the table are then progressively shifted by x_1 , x_2 , ..., x_{n-1} , as in Schramm and Paar, but with a RefreshMask after every shift.

Initial table with *n* shares

 Every line of the SBox is initially randomly shared among n shares, independently for every line.

$$\begin{array}{c|c}
(s_{00,1}, \dots, s_{00,n}) & S(00) \\
\vdots & & \\
(s_{u,1}, \dots, s_{u,n}) & S(u) \\
\vdots & & \\
(s_{FF,1}, \dots, s_{FF,n}) & S(FF)
\end{array}$$

Original shared table

- Equivalent to having *n* randomized tables instead of 1.
- The lines of the table are then progressively shifted by x_1 , x_2 , ..., x_{n-1} , as in Schramm and Paar, but with a RefreshMask after every shift.

Iterative input shift by x_i

Original shared table

$$\vdots$$

$$(s_{u,1}^{(n-1)}, \dots, s_{u,n}^{(n-1)}) \quad S(u \oplus x_1 \oplus \dots \oplus x_{n-1})$$

$$x_n = x \oplus x_1 \oplus \dots \oplus x_{n-1} \rightarrow (s_{x_n,1}^{(n-1)}, \dots, s_{x_n,n}^{(n-1)}) \quad S(x)$$

Final shared table

Iterative input shift by x_i

$$\begin{array}{c|c} x = x_1 \oplus x_2 \oplus \cdots \oplus x_n \\ \hline \begin{pmatrix} (s_{00,1}, \dots, s_{00,n}) \\ \vdots \\ (s_{u,1}, \dots, s_{u,n}) \\ \vdots \\ (s_{FF,1}, \dots, s_{FF,n}) \\ \end{array} \begin{array}{c|c} S(00) \\ \vdots \\ S(u) & x_i \text{-shift} \\ - - - - \rightarrow \\ \text{mask refresh} \\ S(FF) \\ \end{array} \begin{array}{c|c} \vdots \\ (s_{u,1}^{(i)}, \dots, s_{u,n}^{(i)}) \\ \vdots \\ \vdots \\ S(u \oplus x_1 \oplus \cdots \oplus x_i) \\ \vdots \\ S(u \oplus x_1 \oplus \cdots \oplus x_i) \\ \end{array}$$

Original shared table

$$(s_{u,1}^{(n-1)}, \dots, s_{u,n}^{(n-1)}) S(u \oplus x_1 \oplus \dots \oplus x_{n-1})$$

$$(s_{x_n,1}^{(n-1)}, \dots, s_{x_n,n}^{(n-1)}) S(x)$$

Final shared table

Iterative input shift by x_i

$$\begin{array}{c|c} x = x_1 \oplus x_2 \oplus \cdots \oplus x_n \\ \hline \begin{pmatrix} (s_{00,1}, \dots, s_{00,n}) \\ \vdots \\ (s_{u,1}, \dots, s_{u,n}) \\ \vdots \\ (s_{\text{FF},1}, \dots, s_{\text{FF},n}) \\ \end{array} \begin{array}{c|c} S(00) \\ \vdots \\ S(w) & x_i \text{-shift} \\ - - - - + \\ \text{mask refresh} \\ \text{sum} \\ S(\text{FF}) \\ \end{array} \begin{array}{c|c} \vdots \\ (s_{u,1}^{(i)}, \dots, s_{u,n}^{(i)}) \\ \vdots \\ \vdots \\ S(u \oplus x_1 \oplus \cdots \oplus x_i) \\ \vdots \\ S(w \oplus x_1 \oplus \cdots \oplus x_i) \\ \end{array}$$

Original shared table

$$(s_{u,1}^{(n-1)}, \dots, s_{u,n}^{(n-1)}) = S(u \oplus x_1 \oplus \dots \oplus x_{n-1})$$

$$(s_{x_n,1}^{(n-1)}, \dots, s_{x_n,n}^{(n-1)}) = S(x)$$

Final shared table

Final randomized table

• In the final shared table, the inputs are shifted by $x_1 \oplus \cdots \oplus x_{n-1}$:

$$\begin{array}{c}
\vdots \\
(s_{u,1}^{(n-1)}, \dots, s_{u,n}^{(n-1)}) \\
x_n = x \oplus x_1 \oplus \dots \oplus x_{n-1} \longrightarrow (s_{x_n,1}^{(n-1)}, \dots, s_{x_n,n}^{(n-1)})
\end{array}$$

$$S(u \oplus x_1 \oplus \dots \oplus x_{n-1})$$

$$S(x)$$

Final shared table

• The *n* output shares $T(x_n) = (s_{x_n,1}^{(n-1)}, \dots, s_{x_n,n}^{(n-1)})$ correspond to the output S(x)

Final randomized table

• In the final shared table, the inputs are shifted by $x_1 \oplus \cdots \oplus x_{n-1}$:

$$(s_{u,1}^{(n-1)}, \dots, s_{u,n}^{(n-1)}) S(u \oplus x_1 \oplus \dots \oplus x_{n-1})$$

$$(s_{x_n,1}^{(n-1)}, \dots, s_{x_n,n}^{(n-1)}) S(x)$$

Final shared table

• The *n* output shares $T(x_n) = (s_{x_n,1}^{(n-1)}, \dots, s_{x_n,n}^{(n-1)})$ correspond to the output S(x)

Mask Refreshing

• Required property: any subset of n-1 output shares z_i is uniformly and independently distributed.

Why are the mask refreshing necessary?

• Without mask refreshing:

Final shared table

 The mask refreshing prevents from correlating shares between different shifts of the tables.

Why are the mask refreshing necessary?

Without mask refreshing:

Final shared table

 The mask refreshing prevents from correlating shares between different shifts of the tables

Why are the mask refreshing necessary?

Without mask refreshing:

Final shared table

 The mask refreshing prevents from correlating shares between different shifts of the tables.

Full Algorithm

Algorithm 1 Masked computation of y = S(x)

```
Input: x_1, \ldots, x_n such that x = x_1 \oplus \cdots \oplus x_n
Output: y_1, \ldots, y_n such that y = S(x) = y_1 \oplus \cdots \oplus y_n
 1: for all u \in \{0, 1\}^k do
           T(u) \leftarrow (S(u), 0, \dots, 0) \in (\{0, 1\}^{k'})^n
                                                                                                   \triangleright \oplus (T(u)) = S(u)
 3: end for
 4: for i = 1 to n - 1 do
           for all u \in \{0,1\}^k do
 5:
 6:
7:
8:
                for j = 1 to n do T'(u)[j] \leftarrow T(u \oplus x_i)[j]
                                                                                                 \triangleright T'(u) \leftarrow T(u \oplus x_i)
           end for
           for all u \in \{0,1\}^k do
 9:
                 T(u) \leftarrow \text{RefreshMasks}(T'(u)) \qquad \qquad \triangleright \oplus (T(u)) = S(u \oplus x_1 \oplus \cdots \oplus x_i)
10:
            end for
                                            \triangleright \oplus (T(u)) = S(u \oplus x_1 \oplus \cdots \oplus x_{n-1}) \text{ for all } u \in \{0,1\}^k.
11: end for
12: (y_1, \ldots, y_n) \leftarrow \mathsf{RefreshMasks}(T(x_n))
                                                                                                  \triangleright \oplus (T(x_n)) = S(x)
13: return y_1, ..., y_n
```

Mask refreshing

Algorithm 2 RefreshMasks

```
Input: z_1, \ldots, z_n such that z = z_1 \oplus \cdots \oplus z_n

Output: z_1, \ldots, z_n such that z = z_1 \oplus \cdots \oplus z_n

1: for i = 2 to n do

2: tmp \leftarrow \{0, 1\}^{k'}

3: z_1 \leftarrow z_1 \oplus tmp

4: z_i \leftarrow z_i \oplus tmp

5: end for

6: return z_1, \ldots, z_n
```

Asymptotic Complexity

Asymptotic complexity for k-bit SBox and n shares:

Countermeasure	Time comp.	Memory comp.
Carlet <i>et al.</i>	$\mathcal{O}(2^{k/2} \cdot n^2)$	$\mathcal{O}(2^{k/2} \cdot n)$
New countermeasure.	$\mathcal{O}(2^k \cdot n^2)$	$\mathcal{O}(2^k \cdot n)$
New count. (large register)	$\mathcal{O}(2^{k/2} \cdot n^2)$	$\mathcal{O}(2^k \cdot n)$

- Large register variant: pack multiple Sbox outputs in a single register
 - For DES, pack 8 output 4-bit nibbles into a 32-bit register
 - Running time divided by 8

Asymptotic Complexity

Asymptotic complexity for k-bit SBox and n shares:

Countermeasure	Time comp.	Memory comp.
Carlet <i>et al.</i>	$\mathcal{O}(2^{k/2} \cdot n^2)$	$\mathcal{O}(2^{k/2} \cdot n)$
New countermeasure.	$\mathcal{O}(2^k \cdot n^2)$	$\mathcal{O}(2^k \cdot n)$
New count. (large register)	$\mathcal{O}(2^{k/2} \cdot n^2)$	$\mathcal{O}(2^k \cdot n)$

- Large register variant: pack multiple Sbox outputs in a single register
 - For DES, pack 8 output 4-bit nibbles into a 32-bit register
 - Running time divided by 8

ISW security model

• Simulation framework of [ISW03]:

- Show that any t probes can be perfectly simulated from at most n - 1 of the ski's.
- Those n-1 shares sk_i are initially uniformly and independently distributed
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

ISW security model

• Simulation framework of [ISW03]:

- Show that any t probes can be perfectly simulated from at most n − 1 of the sk:'s.
- Those n-1 shares sk_i are initially uniformly and independently distributed
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

ISW security model

• Simulation framework of [ISW03]:

- Show that any t probes can be perfectly simulated from at most n-1 of the sk_i 's.
- Those n-1 shares sk_i are initially uniformly and independently distributed.
- ⇒ the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

Security of high-order table recomputation

Theorem

The table recomputation countermeasure is secure against t probes in the ISW model, for n > 2t + 1.

Proof sketch

Proof sketch

Proof sketch

Protecting a full block-cipher

- Adaptive model of [ISW03]:
 - The adversary can move its *t* probes between successive executions of the block-cipher.
 - $n \ge 4t + 1$ are sufficient to guarantee security in the adaptive model

Protecting a full block-cipher

• Improvement: $n \ge 2t + 1$ are sufficient to guarantee security in the adaptive model

• Optimal: A can probe t shares sk_i at the end of one execution and t shares sk_i at the beginning of the next.

Protecting a full block-cipher

• Improvement: $n \ge 2t + 1$ are sufficient to guarantee security in the adaptive model

• Optimal: A can probe t shares sk_i at the end of one execution and t shares sk_i at the beginning of the next.

Performances for AES

	t	n	Time (ms)	Penalty
AES, unmasked			0.0018	1
AES, Rivain-Prouff	1	3	0.092	50
AES, table recomputation	1	3	0.80	439
AES, Rivain-Prouff	2	5	0.18	96
AES, table recomputation	2	5	2.2	1205
AES, Rivain-Prouff	3	7	0.31	171
AES, table recomputation	3	7	4.4	2411
AES, Rivain-Prouff	4	9	0.51	276
AES, table recomputation	4	9	7.3	4003

- Table recomputation an order of magnitude slower than RP
 - RP can take advantage of the special structure of the AES SBox (only 4 mults in \mathbb{F}_{2^8}).

Performances for DES

	t	n	Time (ms)	Penalty
DES, unmasked			0.010	1
DES, Carlet <i>et al.</i>	1	3	0.47	47
DES, table recomputation	1	3	0.31	31
DES, Carlet <i>et al.</i>	2	5	0.78	79
DES, table recomputation	2	5	0.59	59
DES, Carlet <i>et al.</i>	3	7	1.3	129
DES, table recomputation	3	7	0.90	91
DES, Carlet <i>et al.</i>	4	9	1.9	189
DES, table recomputation	4	9	1.4	142

- For DES the performances are similar
- http://github.com/coron/htable/

