Garbled RAM, Revisited

Daniel Wichs
(Northeastern University)

Joint work with: Craig Gentry, Shai Halevi, Seteve Lu,
Rafail Ostrovsky, Mariana Raykova

Goals of Garbled RAM

An analogue of Yao garbled circuits [Yao82] that
directly garbles Random Access Machines (RAM).

Avoid efficiency loss of converting a RAM to a circuit.
— Google search vs. reading the Internet.

First proposed/constructed by [Lu-Ostrovsky 13].
— Proof of security contains subtle flaw (circularity problem).

This works: new constructions with provable security.

Garbled RAM Definition

GData(D,k) = D

GProg(P,k) —» P
Glnput(x, k) - X

R —
Client Server
secret: k

Eval? (P, %) - vy

Garbled RAM Definition

GData(D,k) = D

GProg(P;, k,i) — P; = O(run-time) §
Glnput(x;, k,1) = X;

Client Server
secret: k

: Eval? P. %) - v
e Security: server only learns y;,v,,... (Pi, Xi) = i

(even data access pattern is hidden!) ~ O(run-time)

Weak vs. Full Security

»Weak security: May reveal data D, and data-access
pattern of computations.

— Locations of memory accessed in each step.
— Values read and written to memory.

e Compiler: weak = full security:
— Use oblivious RAM [co9s,..] to encode/access memory.

Overview of [Lu-Ostrovsky 13]

For now, read-only computation.

Memory

Data D=| D[1] | DJ[2] D[3]

Read location: i

CPU J read bit CPU

Step 1

Memory

Data D=| D[1] | D|2] D3]
GProg:

Read location: i
Glnp CPU J read bit_ cPU
stte >tep 1 Step 2

garbled

garbled circuit

SthE;

garbled

garbled circuit

GData:

F.(1,D[1])

F.(3,D[3])

Read location: i

GProg:

Glnp| cpu
¥ Step 1

state

garbled

garbled circuit

J read bit:

F,(...)isaPRF

StClt€>

garbled

CPU
Step 2

garbled circuit

GData:

GProg:

Glnp
\ 4

state

garbled

F.(1,D[1])

F.(3,D[3])

Read location: i

Co = Enc (Fk(l, 0), labelo),
C1 = Enc (Fk(l, 1), labell)

CPU
Step 1

garbled circuit

PRF Key: k

J read bit

F.(...) isa PRF

state_

garbled

CPU
Step 2

garbled circuit

" PRF Key: k

Let’s try to prove security...

state

garbled

Read location: i

Co = Enc (Fk(l, 0), labelo),
C4 = Enc (Fk(l, 1), labell)

CPU
Step 1

garbled circuit

PRF Key: k

J read bit:

state_

garbled

CPU
Step 2

garbled circuit

- PRF Key: k

Use security of 15t garbled circuit

only learn output

co = Enc (F,,(i,0), labely)
c, = Enc (F,(i,1), label,)

labels
garbled state

read bit

state

—>
—>
—>

CPU
Step 2

garbled circuit

PRF Key: k

Use security of 15t garbled circuit
only learn output (assume DJ[i]=1)

co = Enc (F,,(i,0), labely)

label, read bit

CPU
Step 2
labels state, garbled circuit
garbled state —

— | PRF Key: k

Use security of 2"d garbled circuit

don’t learn
label, for read bit

don’t learn
PRF key k

Use security of Encryption/PRF

co = Enc (F,,(i,0), labely)
labely

labels
garbled state

read bit

state

—>
—>
—>

CPU
Step 2

garbled circuit

PRF Key: k

—

Circularity® Problem!

—

* May appear rectangular

So is it secure?

 Perhaps, but...
— No proof.
— No “simple” circularity assumption on one primitive.

Can we fix it? Yes!

»Fixl ;

— Using identity-based encryption (IBE).

e Fix2 :
— Only use one-way functions.
— Bigger overhead.

The Fix

e Public-key instead of symmetric-key encryption.

— Garbled circuits have hard-coded public key.

— Break circularity: security of ciphertexts holds even
given public-key hard-coded in all garbled circuits.

e Caveat: need identity-based encryption (IBE)
— Original solution used “Sym-key IBE”.

Garbled
Memory

state

Secret keys for identities (i, D|

Fi(

1,D[1]) | F(2,D[2])

F.(3,D[3])

Read location: i

Co = Enc (Fk(l, O), label()),
C4 = Enc (Fk(l, 1), labell)

CPU
Step

PRF Key: k

J read bit:

Encrypt to identities

(i,0) and (i,

1)

1

state

CPU
Step 2

- PRF Key: k

]

Master SK

Garbled
Memory

Secret keys for identities (i, D|

SK1,p[1])| SK@,p[2])

sk(3,p[3])

Read location: i

Co = EnchK((i, O), labelo)
C1 = EnCMpK((i, 1), labell)

state

CPU J read bit

Encrypt to identities

Step 1

SthEg

MPK

(i,0) and (i,1)
CPU J
Step 2
MPK Master PK

How to allow writes?

Predictably-Timed Writes: Compiler
Whenever read location i, (@mmmm | Any Program

“know” its last-write-time u.

Write location j, bit b
Read location i

CPU J read DL cpy J

Step 1 Step 2
state

state

How to allow writes?

e Garbled memory={sk;p :ID = (j,i,b)}
— | =location.

— j = last-write time of location i.

— b =bitin location i written in step j.

 To read location i, need to know last-write time |.
— Encrypt labels to identities (j,i,0) and (,i,1)

 To write location i, at time |
— Create secret key for ID = (J,i,b).

— Need master secret key. Reintroduces circulairty!

How to allow writes?

e |dea: CPU step j can create secret key for any
ID =(j, *,*) but cannot decrypt for identities | < j.

* Prevents circularity: Ciphertext created by CPU
step] maintain semantic security even given
secrets contained in all future CPU steps.

 Need “restricted MSK” for time-period |.

e Use hierarchical IBE.
By being more careful, can use any IBE.

e Theorem: Assuming Identity Based Encryption (IBE),

For any RAM program w. run-time T, data of size N
— Garbled memory-data is of size: O(N).
— Garbled program size, creation/evaluation-time:

O(T - polylog(N)).

e Theorem: Assuming one-way functions,

For any constant € > O:

— Garbled memory-data is of size: O(N).

— Garbled program size, creation/evaluation-time:
O(T - N¢).

Thank You!

