
The Locality of  
Searchable Symmetric Encryption

Rutgers

1

UCSB

Stefano TessaroDavid Cash

2

Connecting security and i/o efficiency 
or 

How a security notion can force inefficient disk  
utilization when encrypting large files

➡ new type of lower bound
➡ new constructions

client

remotely storing encrypted documents

cloud

3

client

remotely storing encrypted documents

cloud

3

client

remotely storing encrypted documents

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

3

client

remotely storing encrypted documents

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

3

client

remotely storing encrypted documents

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

3

client

remotely storing encrypted documents

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

3

➡ client encryption prevents server from helping by
indexing, searching, organizing, …

client

remotely storing encrypted documents

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

3

Send all docs with  
the word “Rutgers”.

➡ client encryption prevents server from helping by
indexing, searching, organizing, …

client

remotely storing encrypted documents

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

3

???

Send all docs with  
the word “Rutgers”.

➡ client encryption prevents server from helping by
indexing, searching, organizing, …

- homomorphic encryption
- private information retrieval
- secure multiparty computation
- oblivious RAM
- …

4

theory solution: computation on encrypted data

- homomorphic encryption
- private information retrieval
- secure multiparty computation
- oblivious RAM
- …

4

➡ enable searching w/o decryption

theory solution: computation on encrypted data

- homomorphic encryption
- private information retrieval
- secure multiparty computation
- oblivious RAM
- …

4

➡ enable searching w/o decryption
➡ minimal “leakage” to server
‣ hide doc plaintexts, query values, even which docs

are downloaded

theory solution: computation on encrypted data

- homomorphic encryption
- private information retrieval
- secure multiparty computation
- oblivious RAM
- …

4

➡ enable searching w/o decryption
➡ minimal “leakage” to server
‣ hide doc plaintexts, query values, even which docs

are downloaded
➡ none currently in use for encrypted search

theory solution: computation on encrypted data

[Song, Wagner, Perrig] & [Curtmola, Garay, Kamara, Ostrovsky]:

5

Different approach to encrypted search:
‣ Almost as efficient as unencrypted search
‣ Target weaker security - “leak the results”

‣ implementable - use only AES/HMAC/etc + data structures

Keyword Doc IDs

“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96

“Committee” 8,37,93,94

“Accept” 2,37,62,75

[SWP] with [CGKO] refinement:

➡ Encrypt actual files using regular encryption
➡ Build and encrypt “(inverted) index” then delegate

decryption of it later

Keyword Doc IDs

“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96

“Committee” 8,37,93,94

“Accept” 2,37,62,75

information retrieval terminology

Keyword Doc IDs

“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96

“Committee” 8,37,93,94

“Accept” 2,37,62,75

information retrieval terminology

“term”

Keyword Doc IDs

“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96

“Committee” 8,37,93,94

“Accept” 2,37,62,75

information retrieval terminology

“term”

“postings list” 
(individual IDs are “postings”)

searchable encryption: three algorithms

term postings

“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96

“Committee” 8,37,93,94

“Accept” 2,37,62,75

client

cloud

8

[Curtmola-Garay-Kamara-Ostrovsky]

searchable encryption: three algorithms

term postings

“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96

“Committee” 8,37,93,94

“Accept” 2,37,62,75

client

cloud

1 Encrypted index generation

8

[Curtmola-Garay-Kamara-Ostrovsky]

searchable encryption: three algorithms

term postings

“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96

“Committee” 8,37,93,94

“Accept” 2,37,62,75

client

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

1 Encrypted index generation

1

8

[Curtmola-Garay-Kamara-Ostrovsky]

searchable encryption: three algorithms

term postings

“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96

“Committee” 8,37,93,94

“Accept” 2,37,62,75

client

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

1 Encrypted index generation

8

[Curtmola-Garay-Kamara-Ostrovsky]

client

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

1 Encrypted index generation

9

searchable encryption: three algorithms
[Curtmola-Garay-Kamara-Ostrovsky]

client

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

1 Encrypted index generation

2 Token generation

9

searchable encryption: three algorithms
[Curtmola-Garay-Kamara-Ostrovsky]

client

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

1 Encrypted index generation

2 Token generation

w = “Committee”
w

2

9

searchable encryption: three algorithms
[Curtmola-Garay-Kamara-Ostrovsky]

client

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

1 Encrypted index generation

2 Token generation

ww = “Committee”
w

2

9

searchable encryption: three algorithms
[Curtmola-Garay-Kamara-Ostrovsky]

client

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

1 Encrypted index generation

2 Token generation 3 Search w/ token

ww = “Committee”
w

2

9

searchable encryption: three algorithms
[Curtmola-Garay-Kamara-Ostrovsky]

client

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

1 Encrypted index generation

2 Token generation 3 Search w/ token

ww = “Committee”
w

2

8,76,89,90 3

9

searchable encryption: three algorithms
[Curtmola-Garay-Kamara-Ostrovsky]

client

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

1 Encrypted index generation

2 Token generation 3 Search w/ token

ww = “Committee”
w

2

8,76,89,90 3

9

searchable encryption: three algorithms
[Curtmola-Garay-Kamara-Ostrovsky]

correctness ⇒ server learns postings for w

10

searchable encryption security definition

A

challenger

[CGKO]

10

searchable encryption security definition

A
I0, w0,1 ,…, w0,q

I1, w1,0 ,…, w1,q

challenger

[CGKO]

10

searchable encryption security definition

A
‣ choose b ∈ {0,1}, key K

‣ encrypt Ib using K

‣ generate tokens for  
wb,1 ,…, wb,q

I0, w0,1 ,…, w0,q

I1, w1,0 ,…, w1,q

challenger

[CGKO]

10

searchable encryption security definition

A
‣ choose b ∈ {0,1}, key K

‣ encrypt Ib using K

‣ generate tokens for  
wb,1 ,…, wb,qEI, t1 ,…, tq

I0, w0,1 ,…, w0,q

I1, w1,0 ,…, w1,q

challenger

[CGKO]

10

searchable encryption security definition

A
‣ choose b ∈ {0,1}, key K

‣ encrypt Ib using K

‣ generate tokens for  
wb,1 ,…, wb,qEI, t1 ,…, tq

I0, w0,1 ,…, w0,q

I1, w1,0 ,…, w1,q

challenger

Guess b?

[CGKO]

10

searchable encryption security definition

A
‣ choose b ∈ {0,1}, key K

‣ encrypt Ib using K

‣ generate tokens for  
wb,1 ,…, wb,q

- I0, I1 have same no. postings

- Same postings list for each w0,i and w1,i

- Notation: I0[w0,i] = I1[w1,i]

‣ Restrictions to prevent trivial attacks:

EI, t1 ,…, tq

I0, w0,1 ,…, w0,q

I1, w1,0 ,…, w1,q

challenger

Guess b?

[CGKO]

10

searchable encryption security definition

A
‣ choose b ∈ {0,1}, key K

‣ encrypt Ib using K

‣ generate tokens for  
wb,1 ,…, wb,q

- I0, I1 have same no. postings

- Same postings list for each w0,i and w1,i

- Notation: I0[w0,i] = I1[w1,i]

‣ Restrictions to prevent trivial attacks:

EI, t1 ,…, tq

I0, w0,1 ,…, w0,q

I1, w1,0 ,…, w1,q

challenger

Guess b?

Def: Scheme is secure
if all poly-time A guess
b with probability ≈ 1/2

[CGKO]

hides everything for part of index not searched, including:

- sizes of postings lists

- postings in lists

- # of postings lists in index

will not hide:

- postings lists as searches are issued

- when searches repeat

- total # postings in index

what does searchable encryption leak?

11

research on searchable encryption

- secure updates after initial upload [KPR, KP, CJJJKRS, NPG]

- other security properties (auth, UC, etc) [KO, LSDHJ, CK]

- boolean search queries [CJJKRS]

- keyword search with “web structure” [CK]

- used in DB encryption in CryptDB & Monomi [PRZB, TKMZ]

- Challenges with flexibility, usability 

12

13

systems collaborators at IBM complained:

bottleneck of searchable encryption: locality

Fine, the asymptotics are optimal, but this
stuff is unusably slow for large indexes.“

13

systems collaborators at IBM complained:

➡ Runtime bottleneck: disk latency, not crypto processing.

bottleneck of searchable encryption: locality

Fine, the asymptotics are optimal, but this
stuff is unusably slow for large indexes.“

client
nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w = “Committee”
w

14

memory access during encrypted search

client
nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

w = “Committee”
w

14

memory access during encrypted search

client
nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

w = “Committee”
w

14

memory access during encrypted search

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

➡ constructions access one random part of memory per posting

client
nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

w = “Committee”
w

8,76,89,90

14

memory access during encrypted search

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

➡ constructions access one random part of memory per posting

client
nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

w = “Committee”
w

8,76,89,90

14

memory access during encrypted search

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

➡ constructions access one random part of memory per posting

- one disk seek per posting (≈ only few bytes, wasteful)

client
nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

w = “Committee”
w

8,76,89,90

14

memory access during encrypted search

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

➡ constructions access one random part of memory per posting

- one disk seek per posting (≈ only few bytes, wasteful)
➡ plaintext search can use one contiguous access for entire

postings list

15

i/o efficiency theory

‣ count only # of blocks moved to/from disk [Aggarwal-Vitter]

- to read a block in new location, incur seek time

- seek time overwhelms time for computation

‣ numerous versions of theory i/o models (see [Vitter] text)

‣ optimal results (matching upper/lower bounds) for many
problems like sorting, dictionary look-up, …

our results: i/o efficiency and searchable encryption

16

➡ initiate study of i/o efficiency and security!

‣ first formal connection with any crypto primitive  

our results: i/o efficiency and searchable encryption

16

➡ initiate study of i/o efficiency and security!

‣ first formal connection with any crypto primitive  

➡unconditional i/o lower bounds for searchable encryption!

‣ new proof technique  

our results: i/o efficiency and searchable encryption

16

➡ initiate study of i/o efficiency and security!

‣ first formal connection with any crypto primitive  

➡unconditional i/o lower bounds for searchable encryption!

‣ new proof technique  

➡construction improving i/o efficiency of prior work

our results: i/o efficiency lower bound

“Theorem”: Secure searchable encryption must either:
(1) Have a very large encrypted index,

or
(2) Read memory in a highly “non-local” fashion,!

or!
(3) Read more memory than a plaintext search.

17

our results: i/o efficiency lower bound

“Theorem”: Secure searchable encryption must either:
(1) Have a very large encrypted index,

or
(2) Read memory in a highly “non-local” fashion,!

or!
(3) Read more memory than a plaintext search.

17

➡ unconditional (no complexity assumptions)

our results: i/o efficiency lower bound

“Theorem”: Secure searchable encryption must either:
(1) Have a very large encrypted index,

or
(2) Read memory in a highly “non-local” fashion,!

or!
(3) Read more memory than a plaintext search.

17

➡ unconditional (no complexity assumptions)
➡ applies to any scheme (no assumption about how it works)

our results: i/o efficiency lower bound

“Theorem”: Secure searchable encryption must either:
(1) Have a very large encrypted index,

or
(2) Read memory in a highly “non-local” fashion,!

or!
(3) Read more memory than a plaintext search.

17

➡ unconditional (no complexity assumptions)
➡ applies to any scheme (no assumption about how it works)
➡ different type of i/o lower bound: security vs. correctness

memory utilization in searching

18

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

8,76,89,90

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

any construction can be seen as “touching” contiguous regions of
memory during search processing:

memory utilization in searching

19

we use three (very primitive) measures:

1.encrypted index size: measured relative to #-postings

2. locality: number of contiguous regions touched

3. read overlaps: amount of touched memory common between  
searches

memory utilization in searching

19

we use three (very primitive) measures:

1.encrypted index size: measured relative to #-postings

2. locality: number of contiguous regions touched

3. read overlaps: amount of touched memory common between  
searches

term postings
“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96
“Committee” 8,37,93,94

“Accept” 2,37,62,75

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

N postings total f(N) bits

memory utilization in searching

19

we use three (very primitive) measures:

1.encrypted index size: measured relative to #-postings

2. locality: number of contiguous regions touched

3. read overlaps: amount of touched memory common between  
searches

memory utilization in searching

20

we use three (very primitive) measures:

1.encrypted index size: measured relative to #-postings

2. locality: number of contiguous regions touched

3. read overlaps: amount of touched memory common between  
searches

memory utilization in searching

20

we use three (very primitive) measures:

1.encrypted index size: measured relative to #-postings

2. locality: number of contiguous regions touched

3. read overlaps: amount of touched memory common between  
searches

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

8,76,89,90

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

search for R postings

touch f(N,R) contiguous regions

memory utilization in searching

21

we use three (very primitive) measures:

1.encrypted index size: measured relative to #-postings

2. locality: number of contiguous regions touched

3. read overlaps: amount of touched memory common between  
searches

read overlaps

22

Encrypted index in memory:

read overlaps

22

search for w1

Encrypted index in memory:

read overlaps

22

search for w1 search for w2

Encrypted index in memory:

search for w3

read overlaps

22

search for w1 search for w2

Encrypted index in memory:

search for w3

read overlaps

22

search for w1 search for w2

Overlap of search for w3 = size of orange regions

Encrypted index in memory:

search for w3

read overlaps

22

search for w1 search for w2

Overlap of search for w3 = size of orange regions

➡ f-overlap ⟹ any search touches f common bits

Encrypted index in memory:

search for w3

read overlaps

22

search for w1 search for w2

Overlap of search for w3 = size of orange regions

➡ f-overlap ⟹ any search touches f common bits

➡ intuition: large overlaps ≈ reading more bits than necessary

Encrypted index in memory:

search for w3

read overlaps

22

search for w1 search for w2

Overlap of search for w3 = size of orange regions

➡ f-overlap ⟹ any search touches f common bits

➡ intuition: large overlaps ≈ reading more bits than necessary
➡ small overlap in known constructions (e.g. hash table access)

Encrypted index in memory:

our results: lower bound (formal)

Theorem: No secure searchable encryption can have all 3:
1. O(N)-size encrypted index
2. O(1)-locality
3. O(1)-overlap on searches

23

Let N = no. postings in input index

➡ super-linear blow-up in storage/locality or highly  
overlapping reads

➡ in paper: smooth trade-off

✴ can be circumvented by changing security def [CJJJKRS]

memory utilization of constructions

24

Enc Ind Size Overlap Locality

lower bound: 1 of ω(N) ω(1) ω(1)

[CGKO,KPR,…] N 1 R

[CK] N 1 1

N = no. postings in input index, R = no. postings in search

2

memory utilization of constructions

24

Enc Ind Size Overlap Locality

lower bound: 1 of ω(N) ω(1) ω(1)

[CGKO,KPR,…] N 1 R

[CK] N 1 1

trivial “read all” N N 1

N = no. postings in input index, R = no. postings in search

2

memory utilization of constructions

24

Enc Ind Size Overlap Locality

lower bound: 1 of ω(N) ω(1) ω(1)

[CGKO,KPR,…] N 1 R

[CK] N 1 1

trivial “read all” N N 1

new construction N log N log N log N

N = no. postings in input index, R = no. postings in search

2

memory utilization of constructions

24

Enc Ind Size Overlap Locality

lower bound: 1 of ω(N) ω(1) ω(1)

[CGKO,KPR,…] N 1 R

[CK] N 1 1

trivial “read all” N N 1

new construction N log N log N log N

➡ open problem: get closer to lower bound

N = no. postings in input index, R = no. postings in search

2

Rest of talk

- a prior construction and why it cannot be “localized”

- lower bound approach

25

[CGKO] construction

term postings

Rutgers 4, 9,37

Admissions 9,37,93,94,95

Committee 8,37,89,90

Accept 4,37,62,75

term postings

K 4, 9,37

K 9,37,93,94,95

K 8,37,89,90

K 4,37,62,75

Encrypted Index Generation Step 1:!

- derive per-term encryption keys: Ki = PRF(wi)

- encrypt individual postings under respective keys

26

Encrypted Index Generation Step 2:!

1. put ciphertexts in random order in array A

2. link together postings lists with encrypted
pointers (encrypted under Ki)

3. encrypted index = A

27

[CGKO] construction A

Encrypted Index Generation Step 2:!

1. put ciphertexts in random order in array A

2. link together postings lists with encrypted
pointers (encrypted under Ki)

3. encrypted index = A

(example with pointers for word “Accept”)
27

[CGKO] construction A

token generation for w:!

- re-derive key K = PRF(w)

- token = K

server search using token:!

- step through list, decrypt postings/
pointers with K

28

[CGKO] construction: searching A

Memory utilization:!

- O(N) size index

- O(R) locality for search w/ R postings

- O(1) read overlaps

29

[CGKO] construction: memory efficiency A

suppose we try to make construction “local”!
➡ store encrypted postings lists together.

30

suppose we try to make construction “local”!
➡ store encrypted postings lists together.

30

becomes

suppose we try to make construction “local”!
➡ store encrypted postings lists together.

which looks like

30

becomes

server can observe memory touched during searches:

31

server can observe memory touched during searches:

31

Touched on 
search 1:

server can observe memory touched during searches:

31

Touched on 
search 1:

Touched on 
search 2:

server can observe memory touched during searches:

composition of untouched 
regions reveals info about  
unopened part of index!

31

Touched on 
search 1:

Touched on 
search 2:

server can observe memory touched during searches:

composition of untouched 
regions reveals info about  
unopened part of index!

➡ e.g. 7 remaining spots 
do not correspond to a  
single postings list

31

Touched on 
search 1:

Touched on 
search 2:

proof intuition

‣ adapt this attack to work against any scheme

proof intuition

‣ adapt this attack to work against any scheme

‣ distinguish two crafted indexes by observing reads and testing  
for biases in their distribution

proof intuition

‣ Lemma 1: If scheme is secure, then memory touched during a
O(1)-local search satisfies a mild pseudorandomness condition

proof intuition

‣ Lemma 1: If scheme is secure, then memory touched during a
O(1)-local search satisfies a mild pseudorandomness condition

proof intuition

‣ Lemma 1: If scheme is secure, then memory touched during a
O(1)-local search satisfies a mild pseudorandomness condition

‣ Lemma 2: Pseudorandom reads will have small gaps often
between contiguous regions often.

proof intuition

‣ Lemma 1: If scheme is secure, then memory touched during a
O(1)-local search satisfies a mild pseudorandomness condition

‣ Lemma 2: Pseudorandom reads will have small gaps often
between contiguous regions often.

proof intuition

‣ Lemma 1: If scheme is secure, then memory touched during a
O(1)-local search satisfies a mild pseudorandomness condition

‣ Lemma 2: Pseudorandom reads will have small gaps often
between contiguous regions often.

‣ small gaps can’t hold contiguous intervals for other searches, so  
gap space is “dead” for searches with larger postings lists

‣ delicate argument to formalize, requires further techniques for full  
theorem

summary

34

➡ first results relating i/o efficiency and security of crypto primitive

summary

34

➡ first results relating i/o efficiency and security of crypto primitive
➡ unconditional lower bounds via new proof technique

- completely different from known i/o lower bounds

summary

34

➡ first results relating i/o efficiency and security of crypto primitive
➡ unconditional lower bounds via new proof technique

- completely different from known i/o lower bounds
➡ improved theoretical i/o efficiency of prior work

summary

34

➡ first results relating i/o efficiency and security of crypto primitive
➡ unconditional lower bounds via new proof technique

- completely different from known i/o lower bounds
➡ improved theoretical i/o efficiency of prior work

Q1: Tighten gap between upper/lower bound?

summary

34

➡ first results relating i/o efficiency and security of crypto primitive
➡ unconditional lower bounds via new proof technique

- completely different from known i/o lower bounds
➡ improved theoretical i/o efficiency of prior work

Q1: Tighten gap between upper/lower bound?

Q2: Fine-grained lower bounds?

summary

34

➡ first results relating i/o efficiency and security of crypto primitive
➡ unconditional lower bounds via new proof technique

- completely different from known i/o lower bounds
➡ improved theoretical i/o efficiency of prior work

Q1: Tighten gap between upper/lower bound?

Q2: Fine-grained lower bounds?

Q3: Other primitives where i/o efficiency dominates?

Thanks!

35

