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Connecting security and i/o efficiency 
or 

How a security notion can force inefficient disk  
utilization when encrypting large files

➡ new type of lower bound 
➡ new constructions
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???

Send all docs with  
the word “Rutgers”.

➡ client encryption prevents server from helping by 
indexing, searching, organizing, …
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➡ enable searching w/o decryption
➡ minimal “leakage” to server
‣ hide doc plaintexts, query values, even which docs 

are downloaded
➡ none currently in use for encrypted search

theory solution: computation on encrypted data



[Song, Wagner, Perrig] & [Curtmola, Garay, Kamara, Ostrovsky]:
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Different approach to encrypted search: 
‣ Almost as efficient as unencrypted search  
‣ Target weaker security - “leak the results”

‣ implementable - use only AES/HMAC/etc + data structures



Keyword Doc IDs

“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96

“Committee” 8,37,93,94

“Accept” 2,37,62,75

[SWP] with [CGKO] refinement:

➡ Encrypt actual files using regular encryption 
➡ Build and encrypt “(inverted) index” then delegate 

decryption of it later
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“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96

“Committee” 8,37,93,94

“Accept” 2,37,62,75

information retrieval terminology

“term”

“postings list” 
(individual IDs are “postings”)
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searchable encryption:  three algorithms
[Curtmola-Garay-Kamara-Ostrovsky]

correctness ⇒ server learns postings for w
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searchable encryption security definition

A
‣ choose b ∈ {0,1}, key K 

‣ encrypt Ib using K 

‣ generate tokens for  
wb,1 ,…, wb,q

- I0, I1 have same no. postings 

- Same postings list for each w0,i and w1,i 

- Notation: I0[w0,i] = I1[w1,i]

‣ Restrictions to prevent trivial attacks:

EI, t1 ,…, tq

I0, w0,1 ,…, w0,q

I1, w1,0 ,…, w1,q

challenger

Guess b?

Def: Scheme is secure 
if all poly-time A guess 
b with probability ≈ 1/2

[CGKO] 



hides everything for part of index not searched, including: 

- sizes of postings lists 

- postings in lists 

- # of postings lists in index

will not hide: 

- postings lists as searches are issued 

- when searches repeat 

- total # postings in index

what does searchable encryption leak?
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research on searchable encryption

- secure updates after initial upload [KPR, KP, CJJJKRS, NPG] 

- other security properties (auth, UC, etc) [KO, LSDHJ, CK] 

- boolean search queries [CJJKRS] 

- keyword search with “web structure” [CK] 

- used in DB encryption in CryptDB & Monomi [PRZB, TKMZ] 

- Challenges with flexibility, usability 

12
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systems collaborators at IBM complained:

➡ Runtime bottleneck: disk latency, not crypto processing.

bottleneck of searchable encryption:  locality

Fine, the asymptotics are optimal, but this 
stuff is unusably slow for large indexes.“
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➡ constructions access one random part of memory per posting

- one disk seek per posting (≈ only few bytes, wasteful)
➡ plaintext search can use one contiguous access for entire 

postings list



15

i/o efficiency theory

‣ count only # of blocks moved to/from disk  [Aggarwal-Vitter] 

- to read a block in new location, incur seek time 

- seek time overwhelms time for computation 

‣ numerous versions of theory i/o models (see [Vitter] text) 

‣ optimal results (matching upper/lower bounds) for many 
problems like sorting, dictionary look-up, …



our results:  i/o efficiency and searchable encryption

16

➡ initiate study of i/o efficiency and security!

‣ first formal connection with any crypto primitive  



our results:  i/o efficiency and searchable encryption

16

➡ initiate study of i/o efficiency and security!

‣ first formal connection with any crypto primitive  

➡unconditional i/o lower bounds for searchable encryption!

‣ new proof technique  



our results:  i/o efficiency and searchable encryption

16

➡ initiate study of i/o efficiency and security!

‣ first formal connection with any crypto primitive  

➡unconditional i/o lower bounds for searchable encryption!

‣ new proof technique  

➡construction improving i/o efficiency of prior work
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or!
(3) Read more memory than a plaintext search.
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our results:  i/o efficiency lower bound

“Theorem”: Secure searchable encryption must either: 
(1)  Have a very large encrypted index, 

or 
(2) Read memory in a highly “non-local” fashion,!

or!
(3) Read more memory than a plaintext search.

17

➡ unconditional (no complexity assumptions)
➡ applies to any scheme (no assumption about how it works)
➡ different type of i/o lower bound:  security vs. correctness
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sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

any construction can be seen as “touching” contiguous regions of 
memory during search processing:
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term postings
“Rutgers” 4,9,37

“Admissions” 9,37,93,94,95,96
“Committee” 8,37,93,94

“Accept” 2,37,62,75

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

N postings total f(N) bits
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we use three (very primitive) measures: 

1.encrypted index size: measured relative to #-postings 

2. locality: number of contiguous regions touched 

3. read overlaps: amount of touched memory common between  
searches

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

cloud

w

8,76,89,90

nCeUKlK7GO5ew6mwpIra!
ODusbskYvBj9GX0F0bNv!
puxtwXKuEdbHVuYAd4mE!
ULgyJmzHV03ar8RDpUE1!
6TfEqihoa8WzcEol8U8b!
Q1BzLK368qufbMMHlGvN!
sOVqt2xtfZhDUpDig8I0!
jyWyuOedYOvYq6XPqZc2!
5tDHNCLv2DFJdcD9o4FD

search for R postings

touch f(N,R) contiguous regions
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1.encrypted index size: measured relative to #-postings 

2. locality: number of contiguous regions touched 

3. read overlaps: amount of touched memory common between  
searches
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Encrypted index in memory:



read overlaps

22

search for w1

Encrypted index in memory:



read overlaps

22

search for w1 search for w2

Encrypted index in memory:



search for w3

read overlaps

22

search for w1 search for w2

Encrypted index in memory:



search for w3

read overlaps

22

search for w1 search for w2

Overlap of search for w3 = size of orange regions

Encrypted index in memory:



search for w3

read overlaps

22

search for w1 search for w2

Overlap of search for w3 = size of orange regions

➡ f-overlap ⟹ any search touches f common bits

Encrypted index in memory:



search for w3

read overlaps

22

search for w1 search for w2

Overlap of search for w3 = size of orange regions

➡ f-overlap ⟹ any search touches f common bits

➡ intuition:  large overlaps ≈ reading more bits than necessary

Encrypted index in memory:



search for w3
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search for w1 search for w2

Overlap of search for w3 = size of orange regions

➡ f-overlap ⟹ any search touches f common bits

➡ intuition:  large overlaps ≈ reading more bits than necessary
➡ small overlap in known constructions (e.g. hash table access)

Encrypted index in memory:



our results:  lower bound (formal)

Theorem: No secure searchable encryption can have all 3: 
1. O(N)-size encrypted index 
2. O(1)-locality 
3. O(1)-overlap on searches

23

Let N = no. postings in input index

➡ super-linear blow-up in storage/locality or highly  
overlapping reads 

➡ in paper: smooth trade-off 

✴ can be circumvented by changing security def [CJJJKRS]
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Enc Ind Size Overlap Locality

lower bound: 1 of ω(N) ω(1) ω(1)

[CGKO,KPR,…] N 1 R

[CK] N 1 1

N = no. postings in input index,  R = no. postings in search

2
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lower bound: 1 of ω(N) ω(1) ω(1)

[CGKO,KPR,…] N 1 R

[CK] N 1 1

trivial “read all” N N 1

new construction N log N log N log N
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Enc Ind Size Overlap Locality

lower bound: 1 of ω(N) ω(1) ω(1)

[CGKO,KPR,…] N 1 R

[CK] N 1 1

trivial “read all” N N 1

new construction N log N log N log N

➡ open problem: get closer to lower bound

N = no. postings in input index,  R = no. postings in search

2



Rest of talk

- a prior construction and why it cannot be “localized” 

- lower bound approach

25



[CGKO] construction

term postings

Rutgers 4, 9,37

Admissions 9,37,93,94,95

Committee 8,37,89,90

Accept 4,37,62,75

term postings

K 4, 9,37

K 9,37,93,94,95

K 8,37,89,90

K 4,37,62,75

Encrypted Index Generation Step 1:!

- derive per-term encryption keys:  Ki = PRF(wi) 

- encrypt individual postings under respective keys

26



Encrypted Index Generation Step 2:!

1. put ciphertexts in random order in array A 

2. link together postings lists with encrypted 
pointers (encrypted under Ki) 

3. encrypted index = A

27

[CGKO] construction A



Encrypted Index Generation Step 2:!

1. put ciphertexts in random order in array A 

2. link together postings lists with encrypted 
pointers (encrypted under Ki) 

3. encrypted index = A

(example with pointers for word “Accept”)
27

[CGKO] construction A



token generation for w:!

-  re-derive key K = PRF(w) 

-  token = K

server search using token:!

- step through list, decrypt postings/
pointers with K

28

[CGKO] construction: searching A



Memory utilization:!

- O(N) size index 

- O(R) locality for search w/ R postings 

- O(1) read overlaps

29

[CGKO] construction: memory efficiency A



suppose we try to make construction “local”!
➡  store encrypted postings lists together.
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suppose we try to make construction “local”!
➡  store encrypted postings lists together.

which looks like

30

becomes
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server can observe memory touched during searches:

composition of untouched 
regions reveals info about  
unopened part of index!

31

Touched on 
search 1:

Touched on 
search 2:



server can observe memory touched during searches:

composition of untouched 
regions reveals info about  
unopened part of index!

➡ e.g. 7 remaining spots 
do not correspond to a  
single postings list

31

Touched on 
search 1:

Touched on 
search 2:
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‣ adapt this attack to work against any scheme



proof intuition

‣ adapt this attack to work against any scheme

‣ distinguish two crafted indexes by observing reads and testing  
for biases in their distribution
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proof intuition

‣ Lemma 1: If scheme is secure, then memory touched during a 
O(1)-local search satisfies a mild pseudorandomness condition

‣ Lemma 2:  Pseudorandom reads will have small gaps often 
between contiguous regions often.

‣ small gaps can’t hold contiguous intervals for other searches, so  
gap space is “dead” for searches with larger postings lists 

‣ delicate argument to formalize, requires further techniques for full  
theorem
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➡ first results relating i/o efficiency and security of crypto primitive
➡ unconditional lower bounds via new proof technique 

- completely different from known i/o lower bounds
➡ improved theoretical i/o efficiency of prior work

Q1: Tighten gap between upper/lower bound?

Q2: Fine-grained lower bounds?

Q3: Other primitives where i/o efficiency dominates?



Thanks!

35


