Reconsidering Generic Composition

Chanathip Namprempre

Thammasat University, Thailand

Phillip Rogaway

University of California, Davis, USA

Tom Shrimpton Portland State University, USA What is the correct way to build an authenticated encryption scheme from an encryption scheme and a MAC? What is the correct way to build an authenticated encryption scheme from an encryption scheme and a MAC?

What is the correct way to build an authenticated encryption scheme from an encryption scheme and a MAC?

Encrypt-then-MAC

Encrypt-then-MAC

Encrypt-then-MAC

"Encrypt-then-MAC"

VS.

Encrypt-then-MAC

IV-based AE scheme built from an IV-based encryption scheme and a MAC

Different starting primitives, different final primitives, different security

Incorrect summary of [BN], in practice

ISO/IEC 19772, Mechanism 5 (Encrypt-then-MAC)

Information Security – Security Techniques – Authenticated Encryption

S required to be a nonce (but not random)

"Enc" = CBC, CTR, OFB, CFB blockcipher modes

- -- not all have {0,1}* domains
- -- some require S to be random for IND-CPA

S not covered by tag

Appeals to [BN] to justify security of a nonce-based scheme built from IV-based encryption.

The thing is...

1. Typical goal nowadays is **nonce-based AE with associated data (NAE)**, not probabilistic AE

2. Standards and common crypto libraries **don't provide probabilistic encryption** schemes, they provide **IV-based encryption**

What are the correct ways to compose a secure IV-based encryption scheme and a secure PRF in order to build a nonce-based AE(AD) scheme?

160 possible constructions analyzed, resulting in:

8 "favored" schemes --- generically secure, good security bounds

1 "transitional" scheme --- generically secure, inferior bound

3 "elusive" schemes --- despite LOADS of effort, unable to find proofs using only IND\$-CPA and PRF security of components, unable to find counterexamples

All other schemes --- we find counterexamples (many trivial, some not)

What security notion?

$$\mathbf{Adv}_{\Pi}^{\mathrm{nAE}}(\mathcal{A}) = \Pr\left[\mathcal{A}^{\mathcal{E}(\cdot,\cdot,\cdot)}, \mathcal{D}(\cdot,\cdot,\cdot)} \Rightarrow 1\right] - \Pr\left[\mathcal{A}^{\$(\cdot,\cdot,\cdot)}, \bot(\cdot,\cdot,\cdot)} \Rightarrow 1\right]$$

we target an "all-in-one" AE notion [RS06], equivalent to IND\$-CPA + INT-CTXT

The favored eight

The favored eight all have the same (good, tight) AE security.

Which should I use?

What are these "vector input" PRFs? Real PRFs (e.g. HMAC-SHA) take a string!

Can be instantiated in many ways. We use the **three-xor construction**.

$$\mathsf{F}_{\mathsf{L}_{1},\mathsf{L}_{2},\mathsf{L}_{3}}(\mathsf{N},\mathsf{A},\mathsf{M}) = \mathsf{f}_{\mathsf{L}_{1}}(\mathsf{N}) \oplus \mathsf{f}_{\mathsf{L}_{2}}(\mathsf{A}) \oplus \mathsf{f}_{\mathsf{L}_{3}}(\mathsf{M})$$

 $\mathsf{F}_{\mathsf{L}1,\mathsf{L}2,\mathsf{L}3}(\mathsf{N}\square,\mathsf{M}) = \mathsf{f}_{\mathsf{L}1}(\mathsf{N}) \oplus 0^{\mathsf{n}} \oplus \mathsf{f}_{\mathsf{L}3}(\mathsf{M})$

 $\mathsf{F}_{\mathsf{L}1,\mathsf{L}2,\mathsf{L}3}(\Box \Box ,\mathsf{M}) = 0^{\mathsf{n}} \oplus 0^{\mathsf{n}} \oplus \mathsf{f}_{\mathsf{L}3}(\mathsf{M})$

The favored eight, based on a string-input PRF

(using the three-XOR construction)

22/24

Also in the paper

Building NAE from tidy **nonce-based encryption** and a PRF: **Three secure options, one elusive.**

Proofs of security for elusive schemes under new "knowledge of tags" assumption

An ISO standard that uses [BN] to justify an NAE design = Broken

Discussion of "tidiness" as a syntactic property of deterministic encryption

High-level Summary

[BN] is fine, but people's "understanding" of it over-generalizes, leading to problems in practice

E&M, EtM, MtE taxonomy / security characterization is specific to building probabilistic AE from probabilistic encryption

GC story is much more nuanced when building nonce-based AE

Thank you!

---- END ----