Generic Universal Forgery Attack on
Iterative Hash-based MACs

Thomas Peyrin and Lei Wang

(3o, | TECHNOLOGICAL

) UNIVERSITY

EUROCRYPT 2014

Outline

e Introduction

» hash-based MACs
» known results on hash-based MACs

> our contributions

* Universal forgery attacks

> attack overview

> new technical ideas

* Conclusion

Outline

e Introduction

» hash-based MACs
» known results on hash-based MACs

> our contributions

* Universal forgery attacks

> attack overview

> new technical ideas

 Conclusion

Message Authentication Code (MAC)

* Symmetric-key cryptographic protocol
» Alice and Bob share a secret key K.
* Provide the authenticity and the integrity

» Bob verifies if T=T’ holds.

(M, T)

Alice

How to Build MACs

* From hash functions

» HMAC, Sandwich-MAC, Envelop-MAC

* From block ciphers

» CBC-MAC, CMAC, PMAC

* From universal hash functions

» UMAC, VMAC, Poly1305
* Dedicated design

» SQUASH, SipHash

How to Build MACs

* From hash functions
» HMAC, Sandwich-MAC, Envelop-MAC

* From block ciphers

» CBC-MAC, CMAC, PMAC

* From universal hash functions

» UMAC, VMAC, Poly1305
* Dedicated design

» SQUASH, SipHash

Iterative Hash-based MACs

* A simplified description
» K1, K, : initialization and finalization keys
> [, g:public deterministic functions
» [:internal state size

> n: tag size

Well-known Example HMAC

* Designed by BCK96

e Standardized by ANSI, IETF, ISO, NIST

* Implemented in SSL, TLS, IPSec...

Known Results of Hash-based MACs

* Pseudo-Random-Function proof

» lower security bound

> up to the birthday bound O(2!/2)

» implication to most security notions

» HMAC, Sandwich-MAC, etc

Known Results of Hash-based MACs

* Generic attacks on each security notion
> upper security bound
> distinguishing-R: O(2!/2)
» distinguishing-H: O(
> existential forgery: O(
» universal forgery: O(
» key recovery: O(

Known Results of Hash-based MACs

* Generic attacks on each security notion
> upper security bound
> distinguishing-R: O(2!/2) tight
» distinguishing-H: O(
> existential forgery: O(
» universal forgery: O(
» key recovery: O(

Our Contributions

* Generic attacks on each security notion
» upper security bound
> distinguishing-R: O(2!/2) tight
» distinguishing-H: O(
> existential forgery: O(
» universal forgery: O(24) O(25'/9)
> key recovery: O(

Our Technical Contributions

* Collision-detection-based attacks
» dis-R and existential forgery by PvO96
» dis-H in single-key setting by NSW+13
* Functional-graph-based attacks

» indifferentiability of HMAC by DRS+12

» dis-R/H and existential forgery of HMAC in
related-key setting by PSW12

» dis-H in single-key setting by LPW13
» universal forgery in this paper:

extract more information than just cycle structure

Outline

e Introduction

» hash-based MACs
» known results on hash-based MACs

> our contributions

* Universal forgery attacks

> attack overview

> new technical ideas

 Conclusion

Universal Forgery Setting

* The adversary
» given a message M (=m | [m,||eee||m,)
» can interact with MAC
» can not query M to MAC

» to produce a valid tag T for M

Universal Forgery Setting

* The adversary must be able to forge any message
» given a message M (=m | [m,||eee||m,)
» can interact with MAC
» can not query M to MAC

» to produce a valid tag T for M

Main Idea

* Construct a second preimage M’ for M

> MACK17K2 (M):MACK1,K2 (M/)

* Query M’ to MAC to obtain a valid tag for M

2

S

collision

L

/
2

T

Ki—s| f M [= —
S
f f

3 [k=3

Main Idea

* Construct a second preimage M’ for M

> MACKl,K2 (M):MACKl,K2 (Ml)

* Query M’ to MAC to obtain a valid tag for M

2

S

collision

L

/
2

T

K —s f - f e .
A
/ /

3 [|3

Difficulty of Constructing such a M’

* Essentially a second preimage attack on a keyed
iterative hash function

> internal states z1,...,Zs are unknown

e Second preimage attack on public iterative hash
function has been published by KSO5

» knowledge of internal states is necessary

™1 ma mg

! ! !

Ki—s| 5 f 2 o2 F s

How to Construct such a M’

* Recover some internal state x;
» states Tj+1,-...,Ts are then known

* Apply previous second preimage attack on public
iterative hash function to get

;41

collision

* Construct M’ = myq|| - --||m;||m}_] - -

S

How to Construct such a M’

* Recover some internal state x;

> staM, Zs are then known
*Ap _ . ~ blic
iter] Our main technical contribution
mor+1 TTTg <

L

A

m; / collision

T

* Construct M’ = my|| - - - ||m;||mg 1| - - ||m

;

/
S

Overview of Our Attacks

* Firstly recover some internal state ¥;
e Secondly find m;_ ¢ || - - - ||m; so that

f("'f(xiami+1)a"' ,ms) :f("'f($ivm;+1)v'“ am;)

+ Finally query M’ = my || - - [[mgl|m}, | - - - | m}, to
get a valid tag for the challenge message M

L1 T

Ki— f |25 F B3 F S g 2

Outline

e Introduction

» hash-based MACs
» known results on hash-based MACs

> our contributions

* Universal forgery attacks

> attack overview

> new technical ideas

 Conclusion

How to Recover an Internal State

» Offline select 2! /s distinct values Y1, - - - Y2t /s

» one pair T; = Y; with a good probability

How to Recover an Internal State

» Offline select 2! /s distinct values Y1, - - - Y2t /s
» one pair T; = Y; with a good probability
* |dentity such a pair and get the value of z;
> in total 2! pairs.
> naive method to verify each pair costs 2
| T

Klﬁl;) f ﬂ) f ﬂxs_—% f CES> g >?

How to Recover an Internal State

» Offline select 2! /s distinct values Y1, - - - Y2t /s
» one pair T; = Y; with a good probability
* |dentity such a pair and get the value of z;
> in total 2! pairs.

> naive method to verify each pair costs 2

> we use a new property to match {z1,..., %}
and{¥1,---,¥%2/s} simultaneously

How to Recover an Internal State

» Offline select 2! /s distinct values Y1, - - - Y2t /s
» one pair T; = Y; with a good probability
* |dentity such a pair and get the value of z;
> in total 2! pairs.

> naive method to verify each pair costs 2

> we use a new property to match {z1,..., %}
and{¥1,---,¥%2/s} simultaneously

Height of nodes in functional graph

Functional Graph

e f:al-bit to[-bit function

e iterate f: z; = f(x;—1)

» #tcomponents: O()
)}g_ » largest components:
#nodes: 2/3 -2

#cycle nodes: 2!/2

longest path: O(2!/2)

Height of Nodes in Functional Graph

* The height of a node = is the number of nodes
from = to the cycle of its component.

» each node has a single path to its cycle

» height of cycle nodes is O
* height range: [0, O(24/2)

How to Recover an Internal State

e Use functional graph of f with a constant message
> e.g., f(-,0): I-bit to I-bit function

> denoted as J[o]

o 0]
Y v
;1

~ |3

How to Recover an Internal State

* Recover the height of {z1,%2,...,%s}

* Select {¥1,¥2, ..., Y21/} With their height

* Match the height between{z,x2,...,2z5} and
{y17y27 e ale/S}

> #pairs left is upper bounded by O(25/6)

» details are omitted, and referred to paper.

* Examine each remaining pair, and identify the pair
T; = Y; to recover x;

How to Recover an Internal State

* Recover the height of {z1,%2,...,%s}

* Select {¥1,¥2, ..., Y21/} With their height

* Match the height between {z1, 22, ..., 24} and
{ylay% e ale/S}

> #pairs left is upper bounded by O(25/6)

» details are omitted, and referred to paper.

* Examine each remaining pair, and identify the pair
T; = Y; to recover x;

How to Recover Height of ¥;

* Find the minimum number of iterations A so that
the output value is a cycle node.

A
[: |
0] 0 0
: ' : cycle
L j —> f —> f — . . —> f n»cl)de

How to Recover Height of 7;

* Use two messages, constructed by appending
m1|| - - [[m; with

» [: the cycle length of the largest component

L) T 10 L T Y O O] A I 0]
L) N) I N (0 S I Ve

How to Recover Height of 7;

[) T O (1) R [N)2

(O N) i (R)

enter the cycle

12 1

- g : “
‘ O__;O__;< O< O 'M{:’O::;O::-goe—-oe—-o %O

How to Recover Height of 7;

D (I T A T (0
02" | a2 [0]2F

outputs collide

i 1 w
ajz ? C:) v 7 dded
O__; __;< O 6'@; O__;O__;O(__ O“_ O %O

How to Recover Height of 7;

(D |02 | [o)*
(R 0 R [0] [0t

jump out the cycle

B o ¢
| vxle v padded

How to Recover Height of 7;

[I e VT

02"

How to Recover Height of 7;

(O])| Y O N)

L) R T 0) IR T T (0

outputs collide /

i 1 i
Lg 9 Q O O

padded
block

How to Recover Height of T;

* Query the constructed message pair to MAC to
check if they collide

(I 6 T Y O (1) R [N 1)
(O T (0 S [(0

|
L j —> f[o]—> f[()] O f[O] —>() ﬁt)ch?

How to Recover Height of T;

* A binary search to recover height

» repeat the procedure by [/2 times

(I) O) [(05
(O Y O N) i (I)
2l/2—1
A
|] |
e
Lj— f[()]_) f[O]_> ¢ o — f[O]_> :?(I)cde?

Outline

e Introduction

» hash-based MACs
» known results on hash-based MACs

> our contributions

* Universal forgery attacks

> attack overview

> main technical ideas

 Conclusion

Conclusion and Open Problems

* Updated results of hash-based MACs

proof attack tightness
> distinguishing-R: ~ O(2l/2) O(2/2) ves
» distinguishing-H: O(2//2) O(2V/2) Yes
> existential forgery: O(21/2) O(21/2) yes
> universal forgery: (0(2//2) 0O(25/%) no
> key recovery: O(2/2) O(2%) no

Thank you for your attention!

