
Generic Universal Forgery Attack on

Iterative Hash-based MACs

Thomas Peyrin and Lei Wang

EUROCRYPT 2014

Outline

• Introduction

 hash-based MACs

 known results on hash-based MACs

 our contributions

• Universal forgery attacks

 attack overview

 new technical ideas

• Conclusion

Outline

• Introduction

 hash-based MACs

 known results on hash-based MACs

 our contributions

• Universal forgery attacks

 attack overview

 new technical ideas

• Conclusion

Message Authentication Code (MAC)

• Symmetric-key cryptographic protocol

• Provide the authenticity and the integrity

Alice Bob

M T

(M, T)

T’ M

MACK MACK

 Alice and Bob share a secret key K.

 Boď verifies if T=T’ holds.

How to Build MACs

• From hash functions

• From block ciphers

 HMAC, Sandwich-MAC, Envelop-MAC

 CBC-MAC, CMAC, PMAC

• From universal hash functions

 UMAC, VMAC, Poly1305

• Dedicated design

 SQUASH, SipHash

How to Build MACs

• From hash functions

• From block ciphers

 HMAC, Sandwich-MAC, Envelop-MAC

 CBC-MAC, CMAC, PMAC

• From universal hash functions

 UMAC, VMAC, Poly1305

• Dedicated design

 SQUASH, SipHash

Iterative Hash-based MACs

• A simplified description

 , : public deterministic functions

 , : initialization and finalization keys

 : internal state size

 : tag size

Well-known Example HMAC

• Designed by BCK96

• Standardized by ANSI, IETF, ISO, NIST

• IŵpleŵeŶted iŶ SSL, TLS, IPSeĐ…

Known Results of Hash-based MACs

• Pseudo-Random-Function proof

 up to the birthday bound

 implication to most security notions

 lower security bound

 HMAC, Sandwich-MAC, etc

• Generic attacks on each security notion

 distinguishing-R:

 distinguishing-H:

 upper security bound

 existential forgery:

 key recovery:

 universal forgery:

Known Results of Hash-based MACs

• Generic attacks on each security notion

 distinguishing-R:

 distinguishing-H:

 upper security bound

 existential forgery:

 key recovery:

 universal forgery:

Known Results of Hash-based MACs

tight

tight

tight

Our Contributions

• Generic attacks on each security notion

 distinguishing-R:

 distinguishing-H:

 upper security bound

 existential forgery:

 key recovery:

 universal forgery:

tight

tight

tight

Our Technical Contributions

• Collision-detection-based attacks

 dis-R and existential forgery by PvO96

 dis-H in single-key setting by NSW+13

• Functional-graph-based attacks

 indifferentiability of HMAC by DRS+12

 dis-R/H and existential forgery of HMAC in

 related-key setting by PSW12

 dis-H in single-key setting by LPW13

 universal forgery in this paper:

extract more information than just cycle structure

Outline

• Introduction

 hash-based MACs

 known results on hash-based MACs

 our contributions

• Universal forgery attacks

 attack overview

 new technical ideas

• Conclusion

Universal Forgery Setting

 given a message M (=m1||m2||•••||ŵs)

 to produce a valid tag T for M

• The adversary

 can interact with MAC

 can not query M to MAC

Universal Forgery Setting

 given a message M (=m1||m2||•••||ŵs)

 to produce a valid tag T for M

• The adversary must be able to forge any message

 can interact with MAC

 can not query M to MAC

Main Idea

• Construct a second preimage M’ for M

• Query M’ to MAC to oďtaiŶ a valid tag for M

collision

Main Idea

• Construct a second preimage M’ for M

• Query M’ to MAC to oďtaiŶ a valid tag for M

collision

Difficulty of Constructing such a M’

• Essentially a second preimage attack on a keyed

 iterative hash function

 internal states are unknown

• Second preimage attack on public iterative hash

 function has been published by KS05

 knowledge of internal states is necessary

How to Construct such a M’
• Recover some internal state

 states are then known

• Apply previous second preimage attack on public

 iterative hash function to get

• Construct

collision

How to Construct such a M’
• Recover some internal state

 states are then known

• Apply previous second preimage attack on public

 iterative hash function to get

• Construct

collision

Our main technical contribution

Overview of Our Attacks

• Firstly recover some internal state

• Secondly find so that

• Finally query to

 get a valid tag for the challenge message

Outline

• Introduction

 hash-based MACs

 known results on hash-based MACs

 our contributions

• Universal forgery attacks

 attack overview

 new technical ideas

• Conclusion

How to Recover an Internal State

• Offline select distinct values

 one pair with a good probability

• Identity such a pair and get the value of

 in total pairs.

 naive method to verify each pair costs

How to Recover an Internal State

• Offline select distinct values

 one pair with a good probability

• Identity such a pair and get the value of

 in total pairs.

 naive method to verify each pair costs

How to Recover an Internal State

• Offline select distinct values

 one pair with a good probability

 we use a new property to match

 and simultaneously

• Identity such a pair and get the value of

 in total pairs.

 naive method to verify each pair costs

How to Recover an Internal State

• Offline select distinct values

 one pair with a good probability

 we use a new property to match

 and simultaneously

Height of nodes in functional graph

Functional Graph

• : a -bit to -bit function

• iterate :

 #components:

 largest components:

#nodes:

#cycle nodes:

longest path:

Height of Nodes in Functional Graph

• The height of a node is the number of nodes

 from to the cycle of its component.

• height range:

 each node has a single path to its cycle

 height of cycle nodes is 0

How to Recover an Internal State

• Use functional graph of with a constant message

 e.g., function

 denoted as

How to Recover an Internal State

• Recover the height of

• Select with their height

• Match the height between and

 #pairs left is upper bounded by

• Examine each remaining pair, and identify the pair

 to recover

 details are omitted, and referred to paper.

How to Recover an Internal State

• Recover the height of

• Select with their height

• Match the height between and

 #pairs left is upper bounded by

• Examine each remaining pair, and identify the pair

 to recover

 details are omitted, and referred to paper.

How to Recover Height of

• Find the minimum number of iterations so that

 the output value is a cycle node.

cycle

node

How to Recover Height of

• Use two messages, constructed by appending

 with

 : the cycle length of the largest component

enter the cycle

How to Recover Height of

outputs collide

How to Recover Height of

jump out the cycle

How to Recover Height of

re-enter the cycle

How to Recover Height of

outputs collide

How to Recover Height of

• Query the constructed message pair to MAC to

 check if they collide

cycle

node?

How to Recover Height of

cycle

node?

How to Recover Height of

• A binary search to recover height

 repeat the procedure by times

Outline

• Introduction

 hash-based MACs

 known results on hash-based MACs

 our contributions

• Universal forgery attacks

 attack overview

 main technical ideas

• Conclusion

Conclusion and Open Problems

• Updated results of hash-based MACs

 distinguishing-R:

 distinguishing-H:

 key recovery:

 universal forgery:

tightness proof attack

yes

yes

no

no

 existential forgery: yes

Thank you for your attention!

