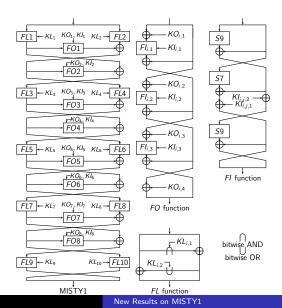
# Practical Attacks on Reduced-Round Misty1

Computer Science Department University of Haifa


28<sup>th</sup> May, 2013

Joint work with Nathan Keller

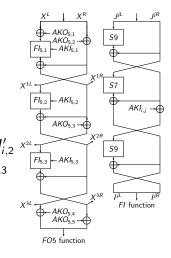


| MISTY  | 1 SQUARE | RK |  |
|--------|----------|----|--|
| MISTY1 |          |    |  |

- Introduced by Matsui in 1997.
- 64-bit block, 128-bit key.
- Recursive structure 8 Feistel rounds, each round function is a 3-round Feistel function.
- Each of these semi-round functions is a 3-round Feistel on its own.
- Uses 7-bit and 9-bit S-boxes for maximal nonlinearity.
- Every two rounds there is an *FL*-layer.
- ► Cryptrec-approved, NESSIE-portfolio, RFC, ISO.
- Predecessor of KASUMI.



SQUA


RK

Previou

### MISTY1 — Equivalent FO Representation

Each *FO* accepts 112-bit subkey. However, one can reduce these to a 107-bit equivalent subkey:

$$AKO_{i,1} = KO_{i,1} AKO_{i,2} = KO_{i,2} AKO_{i,3} = KO_{i,2} \oplus KO_{i,3} \oplus KI'_{i,1} AKO_{i,4} = KO_{i,2} \oplus KO_{i,4} \oplus KI'_{i,1} \oplus KI'_{i,1} AKO_{i,5} = KO_{i,2} \oplus KI'_{i,1} \oplus KI'_{i,2} \oplus KI'_{i,3} AKI_{i,j} = [KI_{i,j}]_{\{8,...,0\}}$$



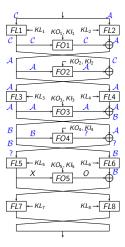
RK

Previous

## Cryptanalytic Results on MISTY1

| Attack                         | Rounds | FL        | Comple                | xity               |
|--------------------------------|--------|-----------|-----------------------|--------------------|
|                                |        | functions | Data                  | Time               |
| Impossible Differential [L+08] | 6      | None      | 2 <sup>39</sup> CP    | 2 <sup>85</sup>    |
| Impossible Differential [DK08] | 7      | None      | 2 <sup>50.2</sup> KP  | $2^{114.1}$        |
| Impossible Differential [JL12] | 7      | None      | 2 <sup>36.5</sup> CP  | 2 <sup>92.2</sup>  |
| Integral [KW02]                | 5      | Most      | 2 <sup>34</sup> CP    | 2 <sup>48</sup>    |
| Integral [LS09]                | 5      | Most      | 2 <sup>34</sup> CP    | 2 <sup>27.32</sup> |
| Integral [LS09]                | 6      | Most      | 2 <sup>34</sup> CP    | $2^{108.1}$        |
| Slicing Attack [K02]           | 4      | All       | 2 <sup>22.25</sup> CP | 2 <sup>45</sup>    |
| Impossible Differential [DK08] | 5      | All       | 2 <sup>38.6</sup> CP  | 2 <sup>46</sup>    |
| Impossible Differential [DK08] | 6      | All       | 2 <sup>51</sup> CP    | $2^{123.4}$        |
| Integral [LS09]                | 6      | All       | 2 <sup>32</sup> CP    | 2 <sup>126</sup>   |
| Impossible Differential [JL12] | 6      | All       | 2 <sup>52.5</sup> CP  | 2 <sup>112.4</sup> |

# Practical Cryptanalytic Results on MISTY1


| Attack                           | Rounds | FL        | Comple                | xity            |
|----------------------------------|--------|-----------|-----------------------|-----------------|
|                                  |        | functions | Data                  | Time            |
| Slicing Attack [K02]             | 4      | All       | 2 <sup>22.25</sup> CP | 2 <sup>45</sup> |
| Higher-Order Differential [BF00] | 5      | None      | 2 <sup>10.5</sup> CP  | 2 <sup>17</sup> |
| Integral [KW02]                  | 5      | Most      | 2 <sup>34</sup> CP    | 2 <sup>48</sup> |
| Integral [LS09]                  | 5      | Most      | 2 <sup>34</sup> CP    | $2^{27.32}$     |
| Impossible Differential [DK08]   | 5      | All       | 2 <sup>38.6</sup> CP  | 2 <sup>46</sup> |
| SQUARE (new)                     | 5      | All       | 2 <sup>35.6</sup> CP  | 2 <sup>38</sup> |
| Related-Key Slide (new)          | 8      | None      | 2 <sup>18</sup> CP    | 2 <sup>18</sup> |
| Related-Key Slide (new)          | (any)  | None      | $2^{18+\epsilon}$ CP  | 2 <sup>18</sup> |

SQUARE

RK

4R

### A 4-Round SQUARE Property



|           | MISTY1 | SQUARE | RK | 4R | Division |
|-----------|--------|--------|----|----|----------|
| N / - : / |        |        |    |    |          |

- Main Problem
  - Attacking 4-round of MISTY1 using this property is straightforward.
  - Attacking the fifth round when no FL is present is also quite straightforward ([KW02,LS09]).
  - ► The problem is attacking the last round with the *FL* layer.
  - ▶ It requires undoing the last *FL* layer and *FO*5.

### Solution: Division

 Instead of checking the full SQUARE condition on 32 bits, i.e.,

$$\sum_{i=1}^{2^{32}} O_i \oplus FL7^{-1}(C_i^R) \stackrel{?}{=} 0,$$

one can check it on a subset of the bits.

Following Sakurai-Zheng [SZ99]:

$$\begin{split} \Delta O^{L}_{\{15,14,\dots,9\}} &= \Delta I^{2L} \oplus \Delta X^{1R}_{\{15,14,\dots,9\}} \\ &= \Delta I^{2L} \oplus \Delta I^{1L} \oplus \Delta X^{R}_{\{15,14,\dots,9\}}. \end{split}$$

▶ Really useful when the last *FL* layer is absent ([KW02] ← [LS09]).

- Further Division
  - The problem with the Sakurai-Zheng relation is its relying on 16 bits (*I*<sup>1L</sup> and *I*<sup>2L</sup> rely on AKO<sub>1</sub> and AKO<sub>2</sub>, respectively).
  - ► This prevents successful combination with the *FL*-layer.

### Further Division

- The problem with the Sakurai-Zheng relation is its relying on 16 bits (*I*<sup>1L</sup> and *I*<sup>2L</sup> rely on AKO<sub>1</sub> and AKO<sub>2</sub>, respectively).
- ► This prevents successful combination with the *FL*-layer.
- Despite the *FL*-layer being easily divisible into 16 parallel functions [DK08].

### Further Division

- The problem with the Sakurai-Zheng relation is its relying on 16 bits (*I*<sup>1L</sup> and *I*<sup>2L</sup> rely on AKO<sub>1</sub> and AKO<sub>2</sub>, respectively).
- ► This prevents successful combination with the *FL*-layer.
- Despite the *FL*-layer being easily divisible into 16 parallel functions [DK08].
- Solution: Further divide Sakurai-Zheng-relation into 7,9,7, and 9 bits.

### Further Division

- The problem with the Sakurai-Zheng relation is its relying on 16 bits (*I*<sup>1L</sup> and *I*<sup>2L</sup> rely on AKO<sub>1</sub> and AKO<sub>2</sub>, respectively).
- ► This prevents successful combination with the *FL*-layer.
- Despite the *FL*-layer being easily divisible into 16 parallel functions [DK08].
- Solution: Further divide Sakurai-Zheng-relation into 7,9,7, and 9 bits.

# FO can be described as four functions from 32 bits to 7,9,7, and 9, bits

SQUARE

Division

### Attack on 5-Round MISTY1

- ▶ To check whether one of the functions is balanced, 71-key bits are needed.
- Luckily, the actucal computation can be done in a Meet-in-the-Middle manner.

STY1 SQUARE

RK

Division

### Attack on 5-Round MISTY1

- To check whether one of the functions is balanced, 71-key bits are needed.
- Luckily, the actucal computation can be done in a Meet-in-the-Middle manner.
- ► A naïve implementation would need 2<sup>36</sup> trials for each structure.
- ► This results in time of about 2<sup>36</sup> · 2<sup>32</sup> · 12 = 2<sup>71.6</sup> operations.
- A simple partial-sum technique can reduce this figure to just 2<sup>38</sup> operations.

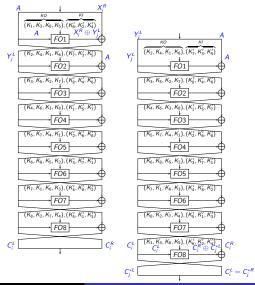
STY1 SQUARE

RK

Division

### Attack on 5-Round MISTY1

- To check whether one of the functions is balanced, 71-key bits are needed.
- Luckily, the actucal computation can be done in a Meet-in-the-Middle manner.
- ► A naïve implementation would need 2<sup>36</sup> trials for each structure.
- ► This results in time of about 2<sup>36</sup> · 2<sup>32</sup> · 12 = 2<sup>71.6</sup> operations.
- A simple partial-sum technique can reduce this figure to just 2<sup>38</sup> operations.
- Outcome: 71-key bits are found using 2<sup>35.6</sup> CPs, 2<sup>38</sup> time and 2<sup>36.6</sup> 64-bit blocks of memory.
- The remaining key bits can be easily found practically for free.


SQUA

RK

Relation

< Verification

### The Related-Key Relation



MISTY1 SQUARE RK Relation Attack Verification

- By picking 2<sup>18</sup> CPs, one expects 4 "slid" pairs, and 4 wrong pairs to pass basic filtering.
- One needs to attack 107-bit subkey, so the standard approach yields attacks of 2<sup>111</sup> operations or so.

MISTY1 SQUARE RK Relation Attack Verification

- By picking 2<sup>18</sup> CPs, one expects 4 "slid" pairs, and 4 wrong pairs to pass basic filtering.
  - One needs to attack 107-bit subkey, so the standard approach yields attacks of 2<sup>111</sup> operations or so.
  - However, we can (almost certainly) identify the "slid" pairs.
  - Same input to first round  $\Rightarrow$  same output.
  - Sort these pairs according to the suggested output of the first round.

Attack RK MISTY1

### Attack Algorithm

- ► Assume at least three "slid" pairs exist (probability 76%).
- We obtain four input-output pairs to FO1.
- And we apply our divided Sakurai-Zheng relation, retrieving  $AKO_{1,1}$  and  $AKO_{1,2}$  in MitM.
- ▶ For the remaining candidates apply the full Sakurai-Zheng relation (using the other 9 bits) to retrieve  $AKI_{1,1}$  and  $AKI_{1,2}$ .
- Follow with similar analysis to retrieve  $AKI_{1,3}$ , and deduce  $AKO_{1.4}$  and  $AKO_{1.5}$ .
- One solution is expected to exist.
- ▶ This approach yields 107 bits of the key in 2<sup>18</sup> time.

MISTY1 SQUARE RK Relation Attack Verification

### Partial Experimental Verification

- We started by verifying we get the right "slid" pairs proportions.
- We run the experiment with MISTY1 code submitted to NESSIE by Mitsubishi.
- ▶ 1,000,000 keys, 2<sup>18</sup> plaintexts (4 expected "slid" pairs).
- We expected that the number of "slid" pairs follows a Poisson distribution with a mean value of 4.

SQUA

RK

Verification

## Partial Experimental Verification (cont.)

| "Slid" Pairs             | 0       | 1      | 2       | 3       | 4       | 5       |
|--------------------------|---------|--------|---------|---------|---------|---------|
| Theory ( <i>Poi</i> (4)) | 18,316  | 73,263 | 146,525 | 195,367 | 195,367 | 156,293 |
| Experiment               | 18,324  | 73,461 | 146,699 | 195,390 | 194,541 | 156,609 |
| "Slid" Pairs             | 6       | 7      | 8       | 9       | 10      | 11      |
| Theory ( <i>Poi</i> (4)) | 104,196 | 59,540 | 29,770  | 13,231  | 5,292   | 1,925   |
| Experiment               | 104,266 | 59,338 | 29,860  | 13,330  | 5,348   | 1,916   |
| "Slid" Pairs             | 12      | 13     | 14      | 15      | 16      | 17      |
| Theory ( <i>Poi</i> (4)) | 641     | 197    | 56      | 15      | 4       | 1       |
| Experiment               | 657     | 190    | 54      | 15      | 2       | 0       |

Partial Experimental Verification of Key Recovery Phase

- We took (by hand) three slid pairs, and put them through the key recovery phase.
- It takes about 0.105 seconds to recover 107 bits of the key, given these pairs.

Partial Experimental Verification of Key Recovery Phase

- We took (by hand) three slid pairs, and put them through the key recovery phase.
- It takes about 0.105 seconds to recover 107 bits of the key, given these pairs.
- We can thus conclude that the attack is practical (it takes about 0.064 seconds to generate the data and identify the pairs).

|      | MISTY1  | SQUARE | RK | Relation | Verification |
|------|---------|--------|----|----------|--------------|
| Conc | lusions |        |    |          |              |

- ▶ New practical attack on 5-round MISTY1.
- New (very practical) related-key attack on 8-round MISTY1 with no *FL* functions.

|        | MISTY1 | SQUARE | RK | Relation | Verification |
|--------|--------|--------|----|----------|--------------|
| Conclu | usions |        |    |          |              |

- ▶ New practical attack on 5-round MISTY1.
- New (very practical) related-key attack on 8-round MISTY1 with no *FL* functions.
- First case of a related-key attack on a "reasonable" cipher which is practical.

|        | MISTY1 | SQUARE | RK | Relatio | ck Verification |
|--------|--------|--------|----|---------|-----------------|
| Conclu | usions |        |    |         |                 |

- ▶ New practical attack on 5-round MISTY1.
- New (very practical) related-key attack on 8-round MISTY1 with no *FL* functions.
- First case of a related-key attack on a "reasonable" cipher which is practical.
- TODO: Finalize the verification of the attack.

|       | MISTY1 | SQUARE | RK | Relation | Verification |
|-------|--------|--------|----|----------|--------------|
| Quest | tions? |        |    |          |              |

# Ενχαριστω!

# Thank you for your attention!