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MISTY1

◮ Introduced by Matsui in 1997.

◮ 64-bit block, 128-bit key.

◮ Recursive structure — 8 Feistel rounds, each round
function is a 3-round Feistel function.

◮ Each of these semi-round functions is a 3-round Feistel on
its own.

◮ Uses 7-bit and 9-bit S-boxes for maximal nonlinearity.

◮ Every two rounds there is an FL-layer.

◮ Cryptrec-approved, NESSIE-portfolio, RFC, ISO.

◮ Predecessor of KASUMI.
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MISTY1 — Equivalent FO Representation

Each FO accepts 112-bit subkey.
However, one can reduce these to a
107-bit equivalent subkey:

AKOi ,1 = KOi ,1

AKOi ,2 = KOi ,2

AKOi ,3 = KOi ,2 ⊕ KOi ,3 ⊕ KI
′
i ,1

AKOi ,4 = KOi ,2 ⊕ KOi ,4 ⊕ KI ′i ,1 ⊕ KI ′i ,2

AKOi ,5 = KOi ,2 ⊕ KI
′
i ,1 ⊕ KI

′
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Cryptanalytic Results on MISTY1

Attack Rounds FL Complexity
functions Data Time

Impossible Differential [L+08] 6 None 239 CP 285

Impossible Differential [DK08] 7 None 250.2 KP 2114.1

Impossible Differential [JL12] 7 None 236.5 CP 292.2

Integral [KW02] 5 Most 234 CP 248

Integral [LS09] 5 Most 234 CP 227.32

Integral [LS09] 6 Most 234 CP 2108.1

Slicing Attack [K02] 4 All 222.25 CP 245

Impossible Differential [DK08] 5 All 238.6 CP 246

Impossible Differential [DK08] 6 All 251 CP 2123.4

Integral [LS09] 6 All 232 CP 2126

Impossible Differential [JL12] 6 All 252.5 CP 2112.4
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Practical Cryptanalytic Results on MISTY1

Attack Rounds FL Complexity
functions Data Time

Slicing Attack [K02] 4 All 222.25 CP 245

Higher-Order Differential [BF00] 5 None 210.5 CP 217

Integral [KW02] 5 Most 234 CP 248

Integral [LS09] 5 Most 234 CP 227.32

Impossible Differential [DK08] 5 All 238.6 CP 246

SQUARE (new) 5 All 235.6 CP 238

Related-Key Slide (new) 8 None 218 CP 218

Related-Key Slide (new) (any) None 218+ǫ CP 218
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A 4-Round SQUARE Property
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Main Problem

◮ Attacking 4-round of MISTY1 using this property is
straightforward.

◮ Attacking the fifth round when no FL is present is also
quite straightforward ([KW02,LS09]).

◮ The problem is attacking the last round with the FL layer.

◮ It requires undoing the last FL layer and FO5.
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Solution: Division

◮ Instead of checking the full SQUARE condition on 32
bits, i.e.,

232∑

i=1

Oi ⊕ FL7−1(CR
i )

?
= 0,

one can check it on a subset of the bits.

◮ Following Sakurai-Zheng [SZ99]:

∆O
L
{15,14,...,9} = ∆I

2L
⊕∆X

1R
{15,14,...,9}

= ∆I
2L
⊕∆I

1L
⊕∆X

R
{15,14,...,9}.

◮ Really useful when the last FL layer is absent ([KW02] ←
[LS09]).
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Further Division

◮ The problem with the Sakurai-Zheng relation is its relying
on 16 bits (I 1L and I 2L rely on AKO1 and AKO2,
respectively).

◮ This prevents successful combination with the FL-layer.
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Further Division

◮ The problem with the Sakurai-Zheng relation is its relying
on 16 bits (I 1L and I 2L rely on AKO1 and AKO2,
respectively).

◮ This prevents successful combination with the FL-layer.

◮ Despite the FL-layer being easily divisible into 16 parallel
functions [DK08].

◮ Solution: Further divide Sakurai-Zheng-relation into
7,9,7, and 9 bits.

FO can be described as four functions from 32
bits to 7,9,7, and 9, bits
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Attack on 5-Round MISTY1

◮ To check whether one of the functions is balanced, 71-key
bits are needed.

◮ Luckily, the actucal computation can be done in a
Meet-in-the-Middle manner.
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MISTY1 SQUARE RK 4R Division

Attack on 5-Round MISTY1

◮ To check whether one of the functions is balanced, 71-key
bits are needed.

◮ Luckily, the actucal computation can be done in a
Meet-in-the-Middle manner.

◮ A näıve implementation would need 236 trials for each
structure.

◮ This results in time of about 236 · 232 · 12 = 271.6

operations.
◮ A simple partial-sum technique can reduce this figure to

just 238 operations.
◮ Outcome: 71-key bits are found using 235.6 CPs, 238 time

and 236.6 64-bit blocks of memory.
◮ The remaining key bits can be easily found practically for

free.
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The Related-Key Relation
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Some Basic Problems

◮ By picking 218 CPs, one expects 4 “slid” pairs, and 4
wrong pairs to pass basic filtering.

◮ One needs to attack 107-bit subkey, so the standard
approach yields attacks of 2111 operations or so.
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Some Basic Problems

◮ By picking 218 CPs, one expects 4 “slid” pairs, and 4
wrong pairs to pass basic filtering.

◮ One needs to attack 107-bit subkey, so the standard
approach yields attacks of 2111 operations or so.

◮ However, we can (almost certainly) identify the “slid”
pairs.

◮ Same input to first round ⇒ same output.

◮ Sort these pairs according to the suggested output of the
first round.
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Attack Algorithm

◮ Assume at least three “slid” pairs exist (probability 76%).

◮ We obtain four input-output pairs to FO1.

◮ And we apply our divided Sakurai-Zheng relation,
retrieving AKO1,1 and AKO1,2 in MitM.

◮ For the remaining candidates — apply the full
Sakurai-Zheng relation (using the other 9 bits) to retrieve
AKI1,1 and AKI1,2.

◮ Follow with similar analysis to retrieve AKI1,3, and deduce
AKO1,4 and AKO1,5.

◮ One solution is expected to exist.

◮ This approach yields 107 bits of the key in 218 time.
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Partial Experimental Verification

◮ We started by verifying we get the right “slid” pairs
proportions.

◮ We run the experiment with MISTY1 code submitted to
NESSIE by Mitsubishi.

◮ 1,000,000 keys, 218 plaintexts (4 expected “slid” pairs).

◮ We expected that the number of “slid” pairs follows a
Poisson distribution with a mean value of 4.
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Partial Experimental Verification (cont.)

“Slid” Pairs 0 1 2 3 4 5
Theory (Poi(4)) 18,316 73,263 146,525 195,367 195,367 156,293
Experiment 18,324 73,461 146,699 195,390 194,541 156,609

“Slid” Pairs 6 7 8 9 10 11
Theory (Poi(4)) 104,196 59,540 29,770 13,231 5,292 1,925
Experiment 104,266 59,338 29,860 13,330 5,348 1,916

“Slid” Pairs 12 13 14 15 16 17
Theory (Poi(4)) 641 197 56 15 4 1
Experiment 657 190 54 15 2 0
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Partial Experimental Verification of Key Recovery

Phase

◮ We took (by hand) three slid pairs, and put them through
the key recovery phase.

◮ It takes about 0.105 seconds to recover 107 bits of the
key, given these pairs.
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Partial Experimental Verification of Key Recovery

Phase

◮ We took (by hand) three slid pairs, and put them through
the key recovery phase.

◮ It takes about 0.105 seconds to recover 107 bits of the
key, given these pairs.

◮ We can thus conclude that the attack is practical (it
takes about 0.064 seconds to generate the data and
identify the pairs).
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Conclusions

◮ New practical attack on 5-round MISTY1.

◮ New (very practical) related-key attack on 8-round
MISTY1 with no FL functions.
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Conclusions

◮ New practical attack on 5-round MISTY1.

◮ New (very practical) related-key attack on 8-round
MISTY1 with no FL functions.

◮ First case of a related-key attack on a “reasonable”
cipher which is practical.

◮ TODO: Finalize the verification of the attack.
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Questions?

Eνχαριστω!

Thank you for your attention!
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