Multiple Results on Multiple Encryption

Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir

The Security of Multiple Encryption:

- Given a block cipher with n-bit plaintexts and n-bit keys, we would like to enhance its security via sequential composition
- Assuming that
 - the basic block cipher has no weaknesses
 - the k keys are independently chosen

how secure is the resultant composition?

$$P \longrightarrow K1 \longrightarrow K2 \longrightarrow K3 \longrightarrow K4 \longrightarrow C$$

Double and Triple Encryptions:

- Double DES and triple DES were widely used by banks, so their security was thoroughly analyzed
- By using a Meet in the Middle (MITM) attack, Diffie and Hellman showed in 1981 that double encryption can be broken in T=2ⁿ time and S=2ⁿ space. Note that TS=2^{2n}
- Given the same amount of space S=2ⁿ, we can break triple encryption in time T=2^{{2n}, so again TS=2^{{3n}

How Secure is k-encryption for k>3?

The fun really starts at quadruple encryption (k=4), which was not well studied so far, since we can show that breaking 4-encryption is not harder than breaking 3-encryption when we use 2ⁿ space!

Our new attacks:

- use the smallest possible amount of data (k known plaintext/ciphertext pairs which are required to uniquely define the k keys)
- Never err (if there is a solution, it will always be found)

k =	2	3				
c =	1	2				

k =	2	3	4				
c =	1	2	2				

k =	2	3	4	5			
c =	1	2	2	3			

k =	2	3	4	5	6			
c =	1	2	2	3	4			

k =	2	3	4	5	6	7		
c =	1	2	2	3	4	4		

k =	2	3	4	5	6	7	8		
c =	1	2	2	3	4	4	5		

k =	2	3	4	5	6	7	8	9	
c =	1	2	2	3	4	4	5	6	

k =	2	3	4	5	6	7	8	9	10	
c =	1	2	2	3	4	4	5	6	7	

k =	2	3	4	5	6	7	8	9	10	11
c =	1	2	2	3	4	4	5	6	7	7

The "Magic Numbers" of rounds:

 We gain some time at each magic number, and the savings accumulate as k increases

- There is an infinite number of magic numbers, starting with k=4, 7, 11, 16, 22, 29, 37, 46, 56,... which grow quadratically
- We can prove the optimality of our new attacks within a broad class of possible algorithms which we call Dissection Attacks

Using the New Techniques to Solve Noncryptographic Combinatorial Search Problems

 Consider for example the knapsack problem of finding a 0/1 solution for x1*a1+x2*a2+x3*a3+...xn*an = v

 We can represent the knapsack problem as a k-encryption problem for any desired k Using the New Techniques to Solve Noncryptographic Combinatorial Search Problems

- Example: Given the 6 generators a1,...,a6, we describe the knapsack problem of representing the number v as a triple encryption with the three independent 2-bit keys (x1,x2),(x3,x4),(x5,x6)
- Starting with plaintext P=0, we first add to it x1*a1+x2*a2 to get the first ciphertext. We then encrypt it a second time by adding to it x3*a3+x4*a4, and finally encrypt it a third time by adding to it x5*a5+x6*a6 to get the final ciphertext C=v

Using the New Techniques to Solve Noncryptographic Combinatorial Search Problems

- The knapsack problem can thus be described as the problem of finding the k keys of n/k bits each that map the initial plaintext 0 to the final ciphertext v
- By using our new 7-encryption attack, we can solve hard knapsack problems in time T=2^{4n/7} and space S=2^{n/7}
- This is a faster attack than the best previously published knapsack solving algorithm (by Becker, Coron, Joux) for such a small memory complexity

Concluding Remarks:

 Breaking multiple encryption is much easier than previously believed

 Many combinatorial search problems can be described as k-encryption problems, and then solved more efficiently by our new generic techniques