
Multiple Results
on

Multiple Encryption

Itai Dinur, Orr Dunkelman,

Nathan Keller, and Adi Shamir

The Security of Multiple Encryption:

 Given a block cipher with n-bit plaintexts
and n-bit keys, we would like to enhance
its security via sequential composition

 Assuming that
– the basic block cipher has no weaknesses
– the k keys are independently chosen

how secure is the resultant composition?

P C

K1 K2 K3 K4

Double and Triple Encryptions:

 Double DES and triple DES were widely used by
banks, so their security was thoroughly analyzed

 By using a Meet in the Middle (MITM) attack,
Diffie and Hellman showed in 1981 that double
encryption can be broken in T=2^n time and
S=2^n space. Note that TS=2^{2n}

 Given the same amount of space S=2^n, we can
break triple encryption in time T=2^{2n}, so again
TS=2^{3n}

How Secure is k-encryption for k>3?

 The fun really starts at quadruple encryption (k=4),
which was not well studied so far, since we can
show that breaking 4-encryption is not harder than
breaking 3-encryption when we use 2^n space!

 Our new attacks:
– use the smallest possible amount of data (k known

plaintext/ciphertext pairs which are required to uniquely
define the k keys)

– Never err (if there is a solution, it will always be found)

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 k =

c =

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 2

 1

k =

c =

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 2 3

 1 2

k =

c =

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 2 3 4

 1 2 2

k =

c =

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 2 3 4 5

 1 2 2 3

k =

c =

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 2 3 4 5 6

 1 2 2 3 4

k =

c =

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 2 3 4 5 6 7

 1 2 2 3 4 4

k =

c =

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 2 3 4 5 6 7 8

 1 2 2 3 4 4 5

k =

c =

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 2 3 4 5 6 7 8 9

 1 2 2 3 4 4 5 6

k =

c =

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 2 3 4 5 6 7 8 9 10

 1 2 2 3 4 4 5 6 7

k =

c =

The time complexity of our new attacks (expressed
by the coefficient c in the time formula T=2^{cn})

 2 3 4 5 6 7 8 9 10 11

 1 2 2 3 4 4 5 6 7 7

k =

c =

The “Magic Numbers” of rounds:

 We gain some time at each magic number,
and the savings accumulate as k increases

 There is an infinite number of magic
numbers, starting with k=4, 7, 11, 16, 22, 29,
37, 46, 56,… which grow quadratically

 We can prove the optimality of our new
attacks within a broad class of possible
algorithms which we call Dissection Attacks

Using the New Techniques to Solve Non-
cryptographic Combinatorial Search Problems

 Consider for example the knapsack problem
of finding a 0/1 solution for
x1*a1+x2*a2+x3*a3+…xn*an = v

 We can represent the knapsack problem as a
k-encryption problem for any desired k

Using the New Techniques to Solve Non-
cryptographic Combinatorial Search Problems

 Example: Given the 6 generators a1,…,a6, we
describe the knapsack problem of
representing the number v as a triple
encryption with the three independent 2-bit
keys (x1,x2),(x3,x4),(x5,x6)

 Starting with plaintext P=0, we first add to
it x1*a1+x2*a2 to get the first ciphertext.
We then encrypt it a second time by adding
to it x3*a3+x4*a4, and finally encrypt it a
third time by adding to it x5*a5+x6*a6 to
get the final ciphertext C=v

Using the New Techniques to Solve Non-
cryptographic Combinatorial Search Problems

 The knapsack problem can thus be described as
the problem of finding the k keys of n/k bits
each that map the initial plaintext 0 to the final
ciphertext v

 By using our new 7-encryption attack, we can
solve hard knapsack problems in time T=2^{4n/7}
and space S=2^{n/7}

 This is a faster attack than the best previously
published knapsack solving algorithm (by Becker,
Coron, Joux) for such a small memory complexity

Concluding Remarks:

 Breaking multiple encryption is much
easier than previously believed

 Many combinatorial search problems can
be described as k-encryption problems,
and then solved more efficiently by our
new generic techniques

