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The Security of Multiple Encryption: 

 Given a block cipher with n-bit plaintexts 
and n-bit keys, we would like to enhance 
its security via sequential composition 

 Assuming that  
– the basic block cipher has no weaknesses 
–  the k keys are independently chosen 

how secure is the resultant composition? 
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Double and Triple Encryptions: 

 Double DES and triple DES were widely used by 
banks, so their security was thoroughly analyzed 

 

 By using a Meet in the Middle (MITM) attack, 
Diffie and Hellman showed in 1981 that double 
encryption can be broken in T=2^n time and 
S=2^n space. Note that TS=2^{2n} 

 

 Given the same amount of space S=2^n, we can 
break triple encryption in time T=2^{2n}, so again 
TS=2^{3n} 



How Secure is k-encryption for k>3?  
 

 The fun really starts at quadruple encryption (k=4), 
which was not well studied so far, since we can 
show that breaking 4-encryption is not harder than 
breaking 3-encryption when we use 2^n space! 

 

 Our new attacks: 
– use the smallest possible amount of data (k known 

plaintext/ciphertext pairs which are required to uniquely 
define the k keys) 

– Never err (if there is a solution, it will always be found) 



The time complexity of our new attacks (expressed 
by the coefficient c in the time formula T=2^{cn}) 
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The “Magic Numbers” of rounds: 

 We gain some time at each magic number, 
and the savings accumulate as k increases 

 

 There is an infinite number of magic 
numbers, starting with k=4, 7, 11, 16, 22, 29, 
37, 46, 56,… which grow quadratically 

 

 We can prove the optimality of our new 
attacks within a broad class of possible 
algorithms which we call Dissection Attacks  



Using the New Techniques to Solve Non-
cryptographic Combinatorial Search Problems 

 Consider for example the knapsack problem 
of finding a 0/1 solution for    
x1*a1+x2*a2+x3*a3+…xn*an = v 

 

 We can represent the knapsack problem as a 
k-encryption problem for any desired k 



Using the New Techniques to Solve Non-
cryptographic Combinatorial Search Problems 

 Example: Given the 6 generators a1,…,a6, we 
describe the knapsack problem of 
representing the number v as a triple 
encryption with the three independent 2-bit 
keys (x1,x2),(x3,x4),(x5,x6) 
 

 Starting with plaintext P=0, we first add to 
it x1*a1+x2*a2 to get the first ciphertext. 
We then encrypt it a second time by adding 
to it x3*a3+x4*a4, and finally encrypt it a 
third time by adding to it x5*a5+x6*a6 to 
get the final ciphertext C=v 



Using the New Techniques to Solve Non-
cryptographic Combinatorial Search Problems 

 The knapsack problem can thus be described as 
the problem of finding the k keys of n/k bits 
each that map the initial plaintext 0 to the final 
ciphertext v 
 

 By using our new 7-encryption attack, we can 
solve hard knapsack problems in time T=2^{4n/7} 
and space S=2^{n/7} 
 

 This is a faster attack than the best previously 
published knapsack solving algorithm (by Becker, 
Coron, Joux) for such a small memory complexity 



Concluding Remarks: 

 Breaking multiple encryption is much 
easier than previously believed 

 

 Many combinatorial search problems can 
be described as k-encryption problems, 
and then solved more efficiently by our 
new generic techniques 


