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Known attacks of the ECDLP Generalities on the DLP

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and g , h ∈ G , find – when it exists – an integer x s.t.

h = g x

Difficulty is related to the group:

1 Generic attacks: complexity in Ω(max(αi
√
pi )) if #G =

∏
i p

αi
i

2 G ⊂ (F∗q,×): index calculus method with complexity in Lq(1/3)
where Lq(α) = exp(c(log q)α(log log q)1−α).

3 G ⊂ (JacC(Fq),+): index calculus method better than generic
attacks (if g > 2)
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Known attacks of the ECDLP Generalities on the DLP

The discrete logarithm problem on elliptic curves
Use the group of points of an elliptic curve defined over a finite field

(EC)DLP: given P,Q ∈ G , find (if it exists) x st Q = [x ]P
The group law is a good compromise between simplicity and intricacy

P•

Q
•

−(P + Q)•

P + Q •

Choice of the field:

Prime field Fp = Z/pZ: good security
but modular arithmetic difficult to
implement in hardware

Extension field Fpn : interesting when p = 2
or p fits into a computer word

Potentially vulnerable to index calculus
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Known attacks of the ECDLP Generalities on the DLP

Basic outline of index calculus methods
(additive notations)

1 Choice of a factor base: F = {g1, . . . , gN} ⊂ G

2 Relation search: decompose ai · g + bi · h (ai , bi random) into F

ai · g + bi · h =
N∑
j=1

ci ,j · gj

3 Linear algebra: once k independent relations found (k ≥ N)

I construct the matrices A =
(
ai bi

)
1≤i≤k

and M = (ci,j) 1≤i≤k
1≤j≤N

I find v = (v1, . . . , vk) ∈ ker(tM) such that vA 6= 0 mod #G

I compute the solution of DLP: x = − (
∑

i aivi ) / (
∑

i bivi ) mod #G
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Known attacks of the ECDLP Generalities on the DLP

Index calculus

Two difficulties :

1 From a practical point of view : linear algebra often the most
delicate phase

I matrices are huge (several millions of unknowns) but very sparse
(only a few non-zero coeff. per row)

I difficult to distribute dedicated algorithms

2 From a theoretical point of view : how to find relations?

I on E (Fp), no known method

I on E (Fpn), two existing methods:

F transfer to JacC(Fp) via Weil descent
F direct decompositions (Gaudry/Diem)
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Known attacks of the ECDLP Weil descent and cover attacks

Transfer of the ECDLP via cover maps (Weil descent)

Let W = WFqn/Fq
(E ) be the Weil restriction of E|Fqn

elliptic curve.
Inclusion of a curve C|Fq

↪→W induces a cover map π : C(Fqn)→ E (Fqn).

1 transfer the DLP from 〈P〉 ⊂ E (Fqn) to JacC(Fq)

C(Fqn)

π

��

JacC(Fqn)
Tr // JacC(Fq)

E (Fqn) JacE (Fqn) ' E (Fqn)

π∗

OO 66

g genus of C
s.t. g ≥ n

2 use index calculus on JacC(Fq):
→ efficient if C is hyperelliptic with small genus g [Gaudry] or has a
small degree plane model [Diem]

Main difficulty : find a convenient curve C with a genus small enough

Vanessa VITSE (UVSQ) Cover and decomposition index calculus 16 avril 2012 7 / 21



Known attacks of the ECDLP Weil descent and cover attacks

Transfer of the ECDLP via cover maps (Weil descent)

Let W = WFqn/Fq
(E ) be the Weil restriction of E|Fqn

elliptic curve.
Inclusion of a curve C|Fq

↪→W induces a cover map π : C(Fqn)→ E (Fqn).

1 transfer the DLP from 〈P〉 ⊂ E (Fqn) to JacC(Fq)

C(Fqn)

π

��

JacC(Fqn)
Tr // JacC(Fq)

E (Fqn) JacE (Fqn) ' E (Fqn)

π∗

OO 66 g genus of C
s.t. g ≥ n

2 use index calculus on JacC(Fq):
→ efficient if C is hyperelliptic with small genus g [Gaudry] or has a
small degree plane model [Diem]

Main difficulty : find a convenient curve C with a genus small enough

Vanessa VITSE (UVSQ) Cover and decomposition index calculus 16 avril 2012 7 / 21



Known attacks of the ECDLP Weil descent and cover attacks

Transfer of the ECDLP via cover maps (Weil descent)

Let W = WFqn/Fq
(E ) be the Weil restriction of E|Fqn

elliptic curve.
Inclusion of a curve C|Fq

↪→W induces a cover map π : C(Fqn)→ E (Fqn).

1 transfer the DLP from 〈P〉 ⊂ E (Fqn) to JacC(Fq)

C(Fqn)

π

��

JacC(Fqn)
Tr // JacC(Fq)

E (Fqn) JacE (Fqn) ' E (Fqn)

π∗

OO 66 g genus of C
s.t. g ≥ n

2 use index calculus on JacC(Fq):
→ efficient if C is hyperelliptic with small genus g [Gaudry] or has a
small degree plane model [Diem]

Main difficulty : find a convenient curve C with a genus small enough

Vanessa VITSE (UVSQ) Cover and decomposition index calculus 16 avril 2012 7 / 21



Known attacks of the ECDLP Weil descent and cover attacks

Transfer of the ECDLP via cover maps (Weil descent)

Let W = WFqn/Fq
(E ) be the Weil restriction of E|Fqn

elliptic curve.
Inclusion of a curve C|Fq

↪→W induces a cover map π : C(Fqn)→ E (Fqn).

1 transfer the DLP from 〈P〉 ⊂ E (Fqn) to JacC(Fq)

C(Fqn)

π

��

JacC(Fqn)
Tr // JacC(Fq)

E (Fqn) JacE (Fqn) ' E (Fqn)

π∗

OO 66 g genus of C
s.t. g ≥ n

2 use index calculus on JacC(Fq):
→ efficient if C is hyperelliptic with small genus g [Gaudry] or has a
small degree plane model [Diem]

Main difficulty : find a convenient curve C with a genus small enough

Vanessa VITSE (UVSQ) Cover and decomposition index calculus 16 avril 2012 7 / 21



Known attacks of the ECDLP Weil descent and cover attacks

The GHS construction

Gaudry-Heß-Smart (binary fields), Diem (odd characteristic case)

Given an elliptic curve E|Fqn
and a degree 2 map E → P1,

construct a curve C|Fq
and a cover map π : C → E .

Problem: for most elliptic curves, g is of the order of 2n

Index calculus on JacC(Fq) usually slower than generic methods on
E (Fqn)

Possibility of using isogenies from E to a vulnerable curve [Galbraith]
→ increase the number of vulnerable curves
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Known attacks of the ECDLP Decomposition attacks

Decomposition attack

Idea from Gaudry and Diem: no transfer, but apply directly index calculus
on E (Fqn) (or JacH(Fqn))

Principle

Factor base:
F = {DQ ∈ JacH(Fqn) : DQ ∼ (Q)−(OH),Q ∈ H(Fqn), x(Q) ∈ Fq}
Decomposition of an arbitrary divisor D ∈ JacH(Fqn) into ng divisors
of the factor base D ∼

∑ng
i=1 ((Qi )− (OH))

Asymptotic complexity in q2−2/ng as q →∞

all curves are equally weak under this attack

decomposition is hard: need to solve polynomial systems
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Known attacks of the ECDLP Decomposition attacks

Nagao’s approach for decompositions

How to check if D = (u, v) can be decomposed ?

D +

ng∑
i=1

((Qi )− (OH)) ∼ 0⇔ D +

ng∑
i=1

((Qi )− (OH)) = div(f )

where f is in the Riemann-Roch space L (ng(OH)− D)

Decomposition of D: resolution of a quadratic polynomial system over Fq

n (n − 1)g variables
from scalar restriction of coord. of f in projectivized Riemann-Roch space

(n − 1) ng equations
expressing that elementary symmetric polynomials of the x(Qi ) lie in Fq.
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Known attacks of the ECDLP Decomposition attacks

Analysis of Nagao’s approach

Solve a 0-dim quadratic polynomial system of (n − 1)ng eq./var. for
each decomposition test
→ complexity at least polynomial in d = 2(n−1)ng

→ in practice, resolution only possible for n and g ≤ 3
or g = 1 and n ≤ 5 (using Semaev’s summation polynomials)

Proba. of decomposition is ' 1/(ng)! and the factor base has ' q
elements
→ about (ng)!q decomposition tests needed, even more for

large prime variations

Relation search too slow for practical DLP resolution
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A new index calculus method

Section 2

A new index calculus method
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A new index calculus method Decomposition attacks for hyperelliptic Jacobians

First ingredient: improved relation search for Jacobians

Using Nagao’s approach to obtain enough decompositions is too slow

Another type of relations

Instead of decompositions, compute relations involving only elements of F :

m∑
i=1

((Qi )− (OH)) ∼ 0

Heuristically, expected number of such relations is ' qm−ng/m!
→ as ' q relations are needed, consider m = ng + 2

Similar type of relations considered in NFS, FFS and Diem’s index calculus
for small degree plane curves
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A new index calculus method Decomposition attacks for hyperelliptic Jacobians

Modified index calculus

H hyperelliptic curve of genus g defined over Fqn , n ≥ 2

find relations of the form
∑ng+2

i=1 ((Qi )− (OH)) ∼ 0

linear algebra: deduce DL of factor base elements up to a constant

descent phase: compute two Nagao-style decompositions to complete
the DLP resolution

With Nagao: about (ng)! q quadratic polynomial systems of
n(n − 1)g eq./var. to solve

With variant: only 1 under-determined quadratic system of
n(n − 1)g + 2n − 2 eq. and n(n − 1)g + 2n var.

Fast resolution

Goal: find a new set of generators of the ideal s.t. each specialization of
two variables yields an easy to solve system → lex Gröbner basis
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A new index calculus method Decomposition attacks for hyperelliptic Jacobians

A special case: quadratic extensions in odd characteristic

Key point: define Fq2 as Fq(t)/(t2 − ω)

Additional structure on the equations: polynomials obtained after
restriction of scalars are multi-homogeneous of bidegree (1, 1)
→ variables of the first homogeneous block belong to a 1-dim. variety

Decomposition method:

1 “specialization”: choose a value for the first variables

2 remaining variables lie in a one-dimensional vector space  easy to
solve system

Further improvement possible by using a sieving technique

Much faster to compute decompositions with our variant
→ about 960 times faster for (n, g) = (2, 3) on a 150-bit curve
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A new index calculus method Decomposition attacks for hyperelliptic Jacobians

The sieving technique

Fact: solutions of the polynomial system only give the polynomial
F (x) =

∏
i (x − x(Qi )) ∈ Fq[x ] → remains to test if it is split.

Sieving method: avoid the factorization of F

1 Specialize first block of variables and express all remaining variables
linearly in terms of one last unknown λ
→ F becomes a polynomial in Fq[x , λ] of deg. 2 in λ and 2g + 2 in x

2 Enumeration in x ∈ Fq instead of λ
→ corresponding values of λ are easier to compute

3 Possible to recover the values of λ for which there were degx F
associated values of x

Time-memory trade-off:
λ 0 1 2 · · · i · · · p − 1

#x x0 x1 x2 · · · xi · · · xp−1

Adapted to large prime variations by sieving only on “small primes”
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A new index calculus method Cover and decomposition attack

Second ingredient: the combined attack

Let E (Fqn) elliptic curve such that

GHS provides covering curves C with too large genus

n is too large for a practical decomposition attack

Cover and decomposition attack [Joux-V.]

If n composite, combine both approaches:

1 use GHS on the subextension Fqn/Fqd to transfer the DL to JacC(Fqd )

2 then use decomposition attack on JacC(Fqd ) with base field Fq to
solve the DLP

→ well adapted for curves defined over some Optimal Extension Fields
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A new index calculus method Application to elliptic curves defined over F
q6

The sextic extension case

Extension degree n = 6 occurs for OEF; ideal target for this combined
attack.

Most favorable case

E|Fq6
has a genus 3 hyperelliptic cover by H|Fq2

→ occurs for Θ(q4) curves directly [Thériault, Momose-Chao]
→ for most curves after an isogeny walk

Otherwise, for curves defined over such extension fields:

GHS yields cover C|Fq
with genus g ≥ 9 and with equality for less

than q3 curves
 index calculus on JacC(Fq) is slower

direct decomposition attack fails to compute any relation
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A new index calculus method Application to elliptic curves defined over F
q6

The sextic extension case
Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, E (Fp6) elliptic curve with 160-bit prime order subgroup

1 Generic attacks: Õ(p3) cost, ≈ 5× 1013 years

2 Former index calculus methods:

Decomposition GHS

Fp6/Fp2 Õ(p2) memory bottleneck

Fp6/Fp intractable
efficient for ≤ 1/p3 curves

g = 9: Õ(p7/4), ≈ 1 500 years

3 Cover and decomposition:
Õ(p5/3) cost using the hyperelliptic genus 3 cover defined over Fp2

I Nagao-style decomposition: ≈ 750 years
I Modified relation search: ≈ 300 years

Vanessa VITSE (UVSQ) Cover and decomposition index calculus 16 avril 2012 19 / 21
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I Modified relation search: ≈ 300 years
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A new index calculus method Application to elliptic curves defined over F
q6

A concrete attack on a 150-bit curve

E : y2 = x(x − α)(x − σ(α)) defined over Fp6 where p = 225 + 35, such
that #E = 4 · 356814156285346166966901450449051336101786213

Previously unreachable curve: GHS gives cover over Fp of genus 33...

Complete resolution of DLP in about 1 month
with cover and decomposition, using genus 3 hyperelliptic cover H|Fp2

Relation search

lex GB: 2.7 sec with one core(1)

sieving: p2/(2 · 8!) ' 1.4× 1010

relations in 62 h on 1 024 cores(2)

→ 960× faster than Nagao

Linear algebra

SGE: 25.5 h on 32 cores(2)

→ fivefold reduction

Lanczos: 28.5 days on 64 cores(2)

(200 MB of data broadcast/round)

(Descent phase done in ∼ 14 s for one point)

(1) Magma on 2.6 GHz Intel Core 2 Duo (2) 2.93GHz quadri-core Intel Xeon 5550
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A new index calculus method Application to elliptic curves defined over F
q6

Scaling data for our implementation

Size of p log2 p ≈ 23 log2 p ≈ 24 log2 p ≈ 25

Group size 136 bits 142 bits 148 bits

Sieving (CPU.hours) 3 600 15 400 63 500

Sieving (real time) 3.5 hours 15 hours 62 hours

Matrix column nb 990 193 1 736 712 3 092 914

(SGE reduction) (4.2) (4.8) (5.4)

Lanczos (CPU.hours) 4 900 16 000 43 800

Lanczos (real time) 77 hours 250 hours 28.5 days

→ approximately 200 CPU.years to break DLP over a 160-bit curve group
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Cover and Decomposition Index Calculus on Elliptic
Curves made practical

Application to a previously unreachable curve over Fp6
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