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Motivation

General Motivation
@ Algebraic Cryptanalysis
@ ldentifying structures which help the solving step (computer algebra)

Elliptic Curve Discrete Logarithm (ECDLP)

Index Calculus (Semaev/Gaudry/Diem)

Polynomial System Solving (PoSSo)
with structures
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Context: Solving the DLP

Discrete logarithm problem (DLP)
Given a finite cyclic group G = (g) and h € G, find an integer k such that

h=[klg=g+...+g

k times

e Generic algorithms O (\/#G)

» Baby Step Giant Step, Pollard’s rho, etc.
» For any G, black box group

@ index calculus can be sub-exponential

> sieving + linear algebra
» G=(Fy, %), G=(Jc(F,),+) with genus g > 2

ww G = E(F,) no sub-exponential index calculus algorithm in general
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Context: Index Calculus
Algorithm

Input : P,Q G
Output : k such that Q = [k]P

e Factor basis: F = {m1,...,7ms}, s = #F

@ Sieving: decompose (if possible) R = [a;]P + [b;]Q over F for many
random (a;, b;)

@ Linear Algebra: when at least s + 1 relations are sieved, reduce them
in order to find a (non trivial) relation between P and Q)

D (- alP+ [N b]Q) =0

J

Complexity

@ Balance between the sieving and linear algebra costs in function of s

@ The existence of an efficient algorithm for decomposing over F

v
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Context: Diem’s Variant of Index Calculus

1 Semaev 04: introduce Summation Polynomials for decomposing points
i Gaudry 05: factor basis with a decomposition algo. (/PoSSo)
i Diem 05,11: generalization of Gaudry's approach
Algorithm (Diem'’s variant)
Input : P,Q € E(Fgn), V a Fg-vector space (dim = n')
Output : x such that Q = [z]P
1. Factor basis: F = {(z,y) € E(Fgn) |z €V}
2. Sieving: [a;]P +[b;]Q=Pi+---+ Ppn, P, € F, m=~n/n

3. Linear algebra Z[)\j a;]P @ [Aj - b5]Q = Og(r,»)
J

Complexity
@ SUBEXP in some cases (Diem 2011)
@ When ¢ = 2 the complexity is exp(O(nlog(n)'/?))
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Point Decomposition Problem (PDP)
PDP(R)
Let be given

e ReFE

@ F a factor basis of points in
Find
e P,...,P, € Fsuchthat R=P; +...+ P,

1= Modeling the problem as a polynomial system {g;,...,gs} and solve

this system.
(x1,y1) € E,...(Tm,ym) € E
(z1,91) @ (z2,92) = (r1,t1)
(r1,t1) @ (x3,y3) = (re, t2)
(Tn—27tn—2) @ (xna yn) = (ny Ry)
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Recent Related Works

o Elliptic curve discrete logarithm problem over small degree
extension fields. Joux, Vitse (To appear in Journ. of Crypto.)

iz’ |nstantiation approach in PDP step

@ Using Symmetries in the Index Calculus for Elliptic Curves
Discrete Logarithm. Faugeére, Gaudry, Huot, R. (ePrint 2012/199)

1wSpecific structures identified + used = save an exp. factor

Rely on Gaudry's variant‘
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Our Contribution

What about Diem'’s variant
in the extremal case of an ECDLP over Fy, with p prime?

o lIdentify specific structures in this case
@ Provide an ad-hoc algorithm

@ Investigate complexity
— Obtain a better one (heuristic)
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Outline

© Main Result
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Algebraic modelling of PDP: Summation polynomials

Semaev, Technical report 2004
w=Projection of the PDP(R=0) on the {x1,..., 2}
PDP: (g1(Z1, ., Ty YLy sYm)s e s 8s(T1se v ey Ty Yly -« vy YUm))
Elimination (Resultant, Grobner basis)
Summation: (f,,(z1,...,2m)) = (81,...,8s) NFgn[z1,..., 2]

deg,. (fn) = om—2

Characterization

fr(x1,.yxm) =0

)
APy, ..., Py) € B®)™ sit. Vi, (P)y =x;and P+ -+ Py =0
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Algebraic modelling of PDP: Summation polynomials

Semaev, Technical report 2004
w=Projection of the PDP(R=0) on the {z1,..., 2y}
PDP: (g1(Z1, -« s Tims Yty oy Ym)y - -5 8s(T1y oo s Ty Y1y e -+, Ym))
Elimination (Resultant, Grobner basis)
Summation: (fy,(21,...,2m)) = (81,...,8s) NFgn[z1,..., 2]

deg, (f.) = om—2

Application in Index Calculus
Solving PDP(R) with factor basis F = {(x,y) € E(Fyn) | x € V}.
)

Finding (z1,...,2m) € V™ st. f,11(21, .., T, Ry) =0

guenael.renault@lip6.fr Eurocrypt 2012 2012/04/16 10/19



Solving equations with vectorial constraint

General problem

Let f(z1,...,2m) € Fonlzy,...,zn] and V = (11, ..., vy) C Fan an
n'-dim Fa-vect with mn’ ~ n. Find the solutions of f in V.

1=\Weill restriction of scalars in two steps!
© Change variables: x; = v1t; 1 + ...+ Uyt .
(b1, s ) = 0 with £ € Fonlty 1, .oyt ] /(65 — tig)

@ Usual scalar restriction: {w1,...,w,} be a Fo-basis of Fan

fr = o1(fy)wr + - + on(f)wn, 0i(fv) € Faltij]/(t]; — tij)

General problem equivalent to solve

p1(fy) = = pn(fy) = 0 over Fy
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Solving equations with vectorial constraint by linearization

Polynomial system model
Rational solutions of Sy @ {@1(fv), ..., on(fv)} C Falti, .. tmw] J

=" Naive method: linearization
e

e We consider many mf with m = [", ¢

o We add (pl((mf)V)7 SR (pn((mf)V) in Salg
e We construct a linear system S;;, from S5 (Macaulay matrix)

monomials in Sy

bttt =pp(mf) | L d,

Is there any linear dependencies between the m;f's 7
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Linear Dependencies

=Frobenius transform is linear

° pi(g}) =2 ajpi(ay)
< avoid m such that m = LT(m'f) for a preceding m’.

n'+1 .
@ {22" 2%, ... 22" "} C vect. space of dim. n'
< consider monomials m = [[;", «5* with e; < 2"

Assumption

If we choose the monomials outside the set we identified here all the
algebraic equations in S, are linearly independant.

Under this assumption, it is now possible to evaluate the number
of columns/rows of the smallest square Macaulay matrix.
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Intrinsic Structures

goi(gv)( Cey tj,l; .. ;tj,n’ o ) mod <t?’j + ti’j>

Block Affine Multilinear

Let k& = Max;(logy(deg,, (f))) and m = [];_, z

w=Due to field equations, ¢;(mf) are affine multilinear

= Deg of p;(mf) w.rt X; = {ti1,... tin} is < maxgcer<con HW(e; + €7)
<5 MonLinB(d) = { multilinears monomials of degree < d in each X;}
— control the number E(d) of monomials

affine multinear: titotats + t1t7 + 1
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Intrinsic Structures
Block Affine Multilinear

Let k& = Max;(logy(deg,, (f))) and m =]/, =
i=Due to field equations, y;(mf) are affine multilinear
= Deg of p;(mf) w.rt X; = {ti1,... tiw} is < maxoce<on HW(ei + €7)

— MonLinB(d) = { multilinears monomlals of degree < d in each X}
< control the number E(d) of monomials

1z MonLinB(d) CC monomials of total degree d™.

M (d) = #MonLinB(d)

n - E(d) ... Ch
Macaulay
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Complexity results

Solving equations with linear constraints

M(d) = (oo ()" and Bld) =2 (Lo, (520)) " ths

!
n- E(d) > M(d) as soon as d ~ %

assumption of linear independency = O(2+™/?)

i==|n the application to ECDLP here, the sieving step is dominant

Solving the ECDLP over 5. with index calculus

Under assumption of linear independency the complexity is bounded by

O(an/Q)

v
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Outline

© Experimental results and Conclusion
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Experiments: Validating the assumption

Fact
A random Boolean matrix of size M(d)
(M +5) x M has rank

M or M — 1 or M — 2 with proba
~ 99.9%. ;

. . 10 ‘

Results (binary fields < 2%7) n- E(d) G

@ For random polynomials f with
degree < 2™~ in each of its

m < 5 variables. :

@ Semaev's summation polynomials
(evaluate) m =2,...,4.

The test was repeated 100 times for (M(d) +5) x M(d)

each examples. The proba. is always
~ 100%. |
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Conclusion

= Structures are identified!

— Ad-hoc linearization algorithm
— Better complexity result!

| inearization: first step in a PoSSo study
— Preleminary experiments with Grobner show better performances.

n m Number of Theoretical
Operations (GB) bound

41 | 2 2735 M(d)? ~ 2%

67 | 2 2371 M(d)? ~ 2%

97 | 2 2711 M(d)? ~ 2%

131 | 2 2745 M (d)? ~ 2160

guenael.renault@lip6.fr Eurocrypt 2012

2012/04/16

18/19



Conclusion

i Structures are identified!
< Ad-hoc linearization algorithm
— Better complexity result!

i=| inearization: first step in a PoSSo study
— Preleminary experiments with Grobner show better performances.

We obtain a better complexity result but still worst than
exhaustive search...
Nonetheless, we give some indication that these polynomial
systems are easier than one might expect at first!
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Conclusion

= Structures are identified!
— Ad-hoc linearization algorithm
< Better complexity result!

1=’ |inearization: first step in a PoSSo study
— Preleminary experiments with Grobner show better performances.
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Conclusion

i Structures are identified!
— Ad-hoc linearization algorithm
— Better complexity result!

1Linearization: first step in a PoSSo study
— Preleminary experiments with Grobner show better performances.

@Semaev summation polynomials are very particular!

< Can not apply usual theoretical /heuristical results in a generic way
— Pitfall of linear dependency!

— Too small experiments for interpolating a better complexity!
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Conclusion, future works

@Semaev summation polynomials are very particular!
< Can not apply usual theoretical /heuristical results in a generic way
— Pitfall of linear dependency!
— Too small experiments for interpolling a better complexity!

iwSemaev summation polynomials contain many more structures!
Using these structures is the only way to progress

— To handle larger examples (at least m = 5, 6)
— To provide theoretical results about degree of regularity

guenael.renault@lip6.fr Eurocrypt 2012 2012/04/16 19/19



	Main Result
	Experimental results and Conclusion

