
SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Plaintext-Dependent Decryption:
A Formal Security Treatment of SSH-CTR

Kenneth G. Paterson and Gaven J. Watson

Information Security Group,
Royal Holloway, University of London

1st June 2010

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 1/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

1 SSH

2 First Formal Security Analysis

3 Attacks Against SSH

4 New Formal Security Analysis

5 Conclusion

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 2/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Outline

1 SSH

2 First Formal Security Analysis

3 Attacks Against SSH

4 New Formal Security Analysis

5 Conclusion

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 3/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH

Wikipedia’s Description:

“Secure Shell or SSH is a network protocol that allows data to be
exchanged using a secure channel between two networked devices. Used
primarily on Linux and Unix based systems to access shell accounts, SSH
was designed as a replacement for TELNET and other insecure remote
shells, which send information, notably passwords, in plaintext, leaving
them open for interception. The encryption used by SSH provides
confidentiality and integrity of data over an insecure network, such as the
Internet.”

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 4/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH RFCs

SSHv2 was standardised in 2006 by the IETF in RFCs 4251-4254.

RFC 4253 specifies the SSH Binary Packet Protocol (BPP).

Symmetric encryption and integrity protection for SSH packets,
using keys agreed in an earlier exchange.

SSHv2 is widely regarded as being secure.

One minor flaw in the BPP that allows distinguishing attacks (Dai;
Bellare, Kohno and Namprempre).

Several minor variants of the SSH BPP were proven secure by
Bellare, Kohno and Namprempre (BKN) (ACM CCS 2002)

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 5/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH Binary Packet Protocol

> 4 bytes

Packet
Length

Padding
Length

Sequence
Number Payload Padding

ENCRYPT

MAC

Ciphertext
Message MAC tag

Ciphertext Packet

4 bytes 4 bytes 1 byte

Encode-then-Encrypt&MAC construction.

Packet length field measures total size of packet on the wire in bytes
and is encrypted to hide true length of SSH packets.

RFC 4253 mandates 3DES-CBC and recommends AES-CBC.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 6/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Outline

1 SSH

2 First Formal Security Analysis

3 Attacks Against SSH

4 New Formal Security Analysis

5 Conclusion

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 7/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

The First Formal Security Treatment

A formal security analysis of the SSH BPP was first performed by
Bellare, Kohno and Namprempre (BKN).

They proposed variants of the SSH BPP and proved them to be
secure.

They prove security in a slightly extended version of the normal
IND-CCA (or LOR-CCA) model.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 8/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

LOR-CCA

The adversary wins if b′ = b.
We define the adversary’s advantage to be:

Advlor-cca = |Pr[b′ = b]− 1

2
|

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 9/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

IND-SFCCA

BKN’s extended model is denoted IND-SFCCA meaning
indistinguishability under chosen-ciphertext attack for stateful
decryption.

Again the adversary has access to a left-or-right encryption oracle
and a decryption oracle.

But the oracles are stateful.

Why?

Recall that the SSH BPP uses a sequence number when calculating
the MAC.
This sequence number does not form part of the plaintext or
ciphertext message; it is only used in the MAC calculation.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 10/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

IND-SFCCA

BKN’s extended model is denoted IND-SFCCA meaning
indistinguishability under chosen-ciphertext attack for stateful
decryption.

Again the adversary has access to a left-or-right encryption oracle
and a decryption oracle.

But the oracles are stateful.

Why?

Recall that the SSH BPP uses a sequence number when calculating
the MAC.
This sequence number does not form part of the plaintext or
ciphertext message; it is only used in the MAC calculation.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 10/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

IND-SFCCA

BKN’s extended model is denoted IND-SFCCA meaning
indistinguishability under chosen-ciphertext attack for stateful
decryption.

Again the adversary has access to a left-or-right encryption oracle
and a decryption oracle.

But the oracles are stateful.

Why?

Recall that the SSH BPP uses a sequence number when calculating
the MAC.
This sequence number does not form part of the plaintext or
ciphertext message; it is only used in the MAC calculation.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 10/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

IND-SFCCA

BKN’s extended model is denoted IND-SFCCA meaning
indistinguishability under chosen-ciphertext attack for stateful
decryption.

Again the adversary has access to a left-or-right encryption oracle
and a decryption oracle.

But the oracles are stateful.

Why?

Recall that the SSH BPP uses a sequence number when calculating
the MAC.
This sequence number does not form part of the plaintext or
ciphertext message; it is only used in the MAC calculation.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 10/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

IND-SFCCA

BKN’s extended model is denoted IND-SFCCA meaning
indistinguishability under chosen-ciphertext attack for stateful
decryption.

Again the adversary has access to a left-or-right encryption oracle
and a decryption oracle.

But the oracles are stateful.

Why?

Recall that the SSH BPP uses a sequence number when calculating
the MAC.
This sequence number does not form part of the plaintext or
ciphertext message; it is only used in the MAC calculation.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 10/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Provably Secure SSH Alternatives

BKN propose various SSH alternatives and prove them secure in their
IND-SFCCA model.

SSH-$NPC, CBC mode with randomised per-packet IV and random
padding.

SSH-CTR, Counter mode encryption.

SSH-CTRIV-CBC, CBC mode with counter IVs.

SSH-EIV-CBC, CBC mode with encrypted IVs.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 11/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Outline

1 SSH

2 First Formal Security Analysis

3 Attacks Against SSH

4 New Formal Security Analysis

5 Conclusion

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 12/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

But....

Albrecht, Paterson and W. (APW) (IEEE S&P 2009) presented
plaintext-recovery attacks against the SSH-BPP.

The attacks exploit features of the BPP not covered by BKN’s
analysis.

The attacks are even applicable to one of the provably secure
variants of SSH proposed by BKN, namely SSH-$NPC.

The attacks demonstrate that the existing IND-SFCCA model fails
to capture all security critical features of the SSH RFCs and SSH
implementations.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 13/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

But....

Albrecht, Paterson and W. (APW) (IEEE S&P 2009) presented
plaintext-recovery attacks against the SSH-BPP.

The attacks exploit features of the BPP not covered by BKN’s
analysis.

The attacks are even applicable to one of the provably secure
variants of SSH proposed by BKN, namely SSH-$NPC.

The attacks demonstrate that the existing IND-SFCCA model fails
to capture all security critical features of the SSH RFCs and SSH
implementations.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 13/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

But....

Albrecht, Paterson and W. (APW) (IEEE S&P 2009) presented
plaintext-recovery attacks against the SSH-BPP.

The attacks exploit features of the BPP not covered by BKN’s
analysis.

The attacks are even applicable to one of the provably secure
variants of SSH proposed by BKN, namely SSH-$NPC.

The attacks demonstrate that the existing IND-SFCCA model fails
to capture all security critical features of the SSH RFCs and SSH
implementations.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 13/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

But....

Albrecht, Paterson and W. (APW) (IEEE S&P 2009) presented
plaintext-recovery attacks against the SSH-BPP.

The attacks exploit features of the BPP not covered by BKN’s
analysis.

The attacks are even applicable to one of the provably secure
variants of SSH proposed by BKN, namely SSH-$NPC.

The attacks demonstrate that the existing IND-SFCCA model fails
to capture all security critical features of the SSH RFCs and SSH
implementations.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 13/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Makes the Attacks Possible?

APW’s attacks exploit an interaction of the following design features of
SSH:

The packet length field encodes how much data needs to be received
before the MAC can be checked.

The attacker can send data on an SSH connection in small chunks
(TCP) and observe how the receiver reacts.

CBC mode is mandated.

A MAC failure is visible on the network.

The attacks were implemented against OpenSSH, one of the most
popular implementations of the SSH RFCs, and apply up to and including
OpenSSH version 5.1.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 14/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Makes the Attacks Possible?

APW’s attacks exploit an interaction of the following design features of
SSH:

The packet length field encodes how much data needs to be received
before the MAC can be checked.

The attacker can send data on an SSH connection in small chunks
(TCP) and observe how the receiver reacts.

CBC mode is mandated.

A MAC failure is visible on the network.

The attacks were implemented against OpenSSH, one of the most
popular implementations of the SSH RFCs, and apply up to and including
OpenSSH version 5.1.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 14/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Makes the Attacks Possible?

APW’s attacks exploit an interaction of the following design features of
SSH:

The packet length field encodes how much data needs to be received
before the MAC can be checked.

The attacker can send data on an SSH connection in small chunks
(TCP) and observe how the receiver reacts.

CBC mode is mandated.

A MAC failure is visible on the network.

The attacks were implemented against OpenSSH, one of the most
popular implementations of the SSH RFCs, and apply up to and including
OpenSSH version 5.1.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 14/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Makes the Attacks Possible?

APW’s attacks exploit an interaction of the following design features of
SSH:

The packet length field encodes how much data needs to be received
before the MAC can be checked.

The attacker can send data on an SSH connection in small chunks
(TCP) and observe how the receiver reacts.

CBC mode is mandated.

A MAC failure is visible on the network.

The attacks were implemented against OpenSSH, one of the most
popular implementations of the SSH RFCs, and apply up to and including
OpenSSH version 5.1.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 14/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Makes the Attacks Possible?

APW’s attacks exploit an interaction of the following design features of
SSH:

The packet length field encodes how much data needs to be received
before the MAC can be checked.

The attacker can send data on an SSH connection in small chunks
(TCP) and observe how the receiver reacts.

CBC mode is mandated.

A MAC failure is visible on the network.

The attacks were implemented against OpenSSH, one of the most
popular implementations of the SSH RFCs, and apply up to and including
OpenSSH version 5.1.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 14/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Makes the Attacks Possible?

APW’s attacks exploit an interaction of the following design features of
SSH:

The packet length field encodes how much data needs to be received
before the MAC can be checked.

The attacker can send data on an SSH connection in small chunks
(TCP) and observe how the receiver reacts.

CBC mode is mandated.

A MAC failure is visible on the network.

The attacks were implemented against OpenSSH, one of the most
popular implementations of the SSH RFCs, and apply up to and including
OpenSSH version 5.1.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 14/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Does This Mean in Practice?

UK Centre for Protection of National Infrastructure (CPNI) released
a vulnerability advisory.

This advisory recommends a switch to counter mode encryption.

Counter mode is resistant to APW’s attacks.
RFC 4344 already existed to standarise the use of counter mode
encryption in SSH.

As a result implementations of SSH (including OpenSSH) have been
updated to use counter mode in preference to CBC mode.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 15/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Does This Mean in Practice?

UK Centre for Protection of National Infrastructure (CPNI) released
a vulnerability advisory.

This advisory recommends a switch to counter mode encryption.

Counter mode is resistant to APW’s attacks.
RFC 4344 already existed to standarise the use of counter mode
encryption in SSH.

As a result implementations of SSH (including OpenSSH) have been
updated to use counter mode in preference to CBC mode.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 15/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Does This Mean in Practice?

UK Centre for Protection of National Infrastructure (CPNI) released
a vulnerability advisory.

This advisory recommends a switch to counter mode encryption.

Counter mode is resistant to APW’s attacks.
RFC 4344 already existed to standarise the use of counter mode
encryption in SSH.

As a result implementations of SSH (including OpenSSH) have been
updated to use counter mode in preference to CBC mode.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 15/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

...and wrt the Security Analysis?

There was a formal security analysis.

We have just seen that due to some aspects not covered by this
existing analysis, attacks were still possible.

So despite SSH-CTR appearing to be resistant to APW style attacks
the existing security analysis does not provide any security
guarantees against these attacks.

Can we add these missing aspects to the analysis and provide a new
proof of security for SSH-CTR?

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 16/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

...and wrt the Security Analysis?

There was a formal security analysis.

We have just seen that due to some aspects not covered by this
existing analysis, attacks were still possible.

So despite SSH-CTR appearing to be resistant to APW style attacks
the existing security analysis does not provide any security
guarantees against these attacks.

Can we add these missing aspects to the analysis and provide a new
proof of security for SSH-CTR?

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 16/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

...and wrt the Security Analysis?

There was a formal security analysis.

We have just seen that due to some aspects not covered by this
existing analysis, attacks were still possible.

So despite SSH-CTR appearing to be resistant to APW style attacks
the existing security analysis does not provide any security
guarantees against these attacks.

Can we add these missing aspects to the analysis and provide a new
proof of security for SSH-CTR?

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 16/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

...and wrt the Security Analysis?

There was a formal security analysis.

We have just seen that due to some aspects not covered by this
existing analysis, attacks were still possible.

So despite SSH-CTR appearing to be resistant to APW style attacks
the existing security analysis does not provide any security
guarantees against these attacks.

Can we add these missing aspects to the analysis and provide a new
proof of security for SSH-CTR?

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 16/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Outline

1 SSH

2 First Formal Security Analysis

3 Attacks Against SSH

4 New Formal Security Analysis

5 Conclusion

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 17/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

This Paper

Aim:

New analysis which more closely captures the capabilities of real
world attackers.
Our new proofs of security must imply security against a much wider
array of attacks including APW’s plaintext-recovery attacks.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 18/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Went Wrong I

The security model does model errors during the BPP decryption
process but only a single type of error message is output.

One of APW’s attacks against OpenSSH exploits the fact that the
errors are distinguishable.
But even allowing only one error type, there is a very simple
distinguishing attack having probability 1 against SSH-$NPC!

One good point is that connection teardowns are modelled by
disallowing access to decryption after an error event.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 19/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Went Wrong I

The security model does model errors during the BPP decryption
process but only a single type of error message is output.

One of APW’s attacks against OpenSSH exploits the fact that the
errors are distinguishable.
But even allowing only one error type, there is a very simple
distinguishing attack having probability 1 against SSH-$NPC!

One good point is that connection teardowns are modelled by
disallowing access to decryption after an error event.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 19/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Went Wrong II

Model:

The security model of BKN assumes that ciphertexts are
“self-describing” in terms of their lengths.

The model does not allow for the possibility that the amount of data
needed to complete the decryption process might be governed by
data produced during the decryption process.

Ciphertexts and plaintexts are handled in the model as “atomic”
strings.

Reality:

In practice, APW’s attacks exploit the fact that SSH is run over
TCP and hence data can be sent in small chunks.

Crucially, the SSH packet length field tells the decryptor how much
data it should expect to receive.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 20/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Went Wrong II

Model:

The security model of BKN assumes that ciphertexts are
“self-describing” in terms of their lengths.

The model does not allow for the possibility that the amount of data
needed to complete the decryption process might be governed by
data produced during the decryption process.

Ciphertexts and plaintexts are handled in the model as “atomic”
strings.

Reality:

In practice, APW’s attacks exploit the fact that SSH is run over
TCP and hence data can be sent in small chunks.

Crucially, the SSH packet length field tells the decryptor how much
data it should expect to receive.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 20/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Went Wrong II

Model:

The security model of BKN assumes that ciphertexts are
“self-describing” in terms of their lengths.

The model does not allow for the possibility that the amount of data
needed to complete the decryption process might be governed by
data produced during the decryption process.

Ciphertexts and plaintexts are handled in the model as “atomic”
strings.

Reality:

In practice, APW’s attacks exploit the fact that SSH is run over
TCP and hence data can be sent in small chunks.

Crucially, the SSH packet length field tells the decryptor how much
data it should expect to receive.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 20/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Went Wrong II

Model:

The security model of BKN assumes that ciphertexts are
“self-describing” in terms of their lengths.

The model does not allow for the possibility that the amount of data
needed to complete the decryption process might be governed by
data produced during the decryption process.

Ciphertexts and plaintexts are handled in the model as “atomic”
strings.

Reality:

In practice, APW’s attacks exploit the fact that SSH is run over
TCP and hence data can be sent in small chunks.

Crucially, the SSH packet length field tells the decryptor how much
data it should expect to receive.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 20/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

What Went Wrong II

Model:

The security model of BKN assumes that ciphertexts are
“self-describing” in terms of their lengths.

The model does not allow for the possibility that the amount of data
needed to complete the decryption process might be governed by
data produced during the decryption process.

Ciphertexts and plaintexts are handled in the model as “atomic”
strings.

Reality:

In practice, APW’s attacks exploit the fact that SSH is run over
TCP and hence data can be sent in small chunks.

Crucially, the SSH packet length field tells the decryptor how much
data it should expect to receive.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 20/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Improving the Security Analysis

So what can we do to improve the existing analysis?

Accurate description of the BPP
Distinguishable Error Outputs:

Length check errors ⊥L

MAC verification errors ⊥A

Parsing or padding check errors ⊥P

Make decryption plaintext-dependent.

Decryption is governed by plaintext received during the decryption
process.
In SSH, the packet length field tells the recipient how much data it
must wait for.

Improving the model

Allow buffered decryption.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 21/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Improving the Security Analysis

So what can we do to improve the existing analysis?

Accurate description of the BPP
Distinguishable Error Outputs:

Length check errors ⊥L

MAC verification errors ⊥A

Parsing or padding check errors ⊥P

Make decryption plaintext-dependent.

Decryption is governed by plaintext received during the decryption
process.
In SSH, the packet length field tells the recipient how much data it
must wait for.

Improving the model

Allow buffered decryption.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 21/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Improving the Security Analysis

So what can we do to improve the existing analysis?

Accurate description of the BPP
Distinguishable Error Outputs:

Length check errors ⊥L

MAC verification errors ⊥A

Parsing or padding check errors ⊥P

Make decryption plaintext-dependent.

Decryption is governed by plaintext received during the decryption
process.
In SSH, the packet length field tells the recipient how much data it
must wait for.

Improving the model

Allow buffered decryption.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 21/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Improving the Security Analysis

So what can we do to improve the existing analysis?

Accurate description of the BPP
Distinguishable Error Outputs:

Length check errors ⊥L

MAC verification errors ⊥A

Parsing or padding check errors ⊥P

Make decryption plaintext-dependent.

Decryption is governed by plaintext received during the decryption
process.
In SSH, the packet length field tells the recipient how much data it
must wait for.

Improving the model

Allow buffered decryption.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 21/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Improving the Security Analysis

So what can we do to improve the existing analysis?

Accurate description of the BPP
Distinguishable Error Outputs:

Length check errors ⊥L

MAC verification errors ⊥A

Parsing or padding check errors ⊥P

Make decryption plaintext-dependent.

Decryption is governed by plaintext received during the decryption
process.
In SSH, the packet length field tells the recipient how much data it
must wait for.

Improving the model

Allow buffered decryption.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 21/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Improving the Security Analysis

So what can we do to improve the existing analysis?

Accurate description of the BPP
Distinguishable Error Outputs:

Length check errors ⊥L

MAC verification errors ⊥A

Parsing or padding check errors ⊥P

Make decryption plaintext-dependent.

Decryption is governed by plaintext received during the decryption
process.
In SSH, the packet length field tells the recipient how much data it
must wait for.

Improving the model

Allow buffered decryption.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 21/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH-CTR

We now give our description of SSH-CTR, with plaintext-dependent
decryption.

The scheme combines:

the encoding scheme for the SSH-BPP, EC = (enc, dec),
a length checking algorithm, len,
counter mode encryption CTR[F],
and a message authentication scheme MA.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 22/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH-CTR

We now give our description of SSH-CTR, with plaintext-dependent
decryption.

The scheme combines:

the encoding scheme for the SSH-BPP, EC = (enc, dec),
a length checking algorithm, len,
counter mode encryption CTR[F],
and a message authentication scheme MA.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 22/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH-CTR – Encoding Scheme

Algorithm enc(m)
if ste =⊥ then

return (⊥,⊥)
end if
if SNe ≥ 232 or |m| ≥ 232−5 then

ste ←⊥
return (⊥,⊥)

else
PL← L− ((|m|+ 5) mod L)
if PL < 4 then

PL← PL + L
end if
PD

r← {0, 1}8·PL

LF ← (1 + |m|+ PL)
me ← 〈LF 〉4‖〈PL〉1‖m‖PD
mt ← SNe‖me

SNe ← SNe + 1
return (me ,mt)

end if

Algorithm dec(me)
if std =⊥ then

return ⊥
end if
if SNd ≥ 232 then

std ←⊥
return ⊥

else
Attempt to parse me as:
〈LF 〉4‖〈PL〉1‖m‖PD where
PL ≥ 4, |PD| = PL and |m| ≥ 0.
if parsing fails then

std ←⊥
return ⊥P

else
SNd ← SNd + 1
return m

end if
end if

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 23/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH-CTR – Length Checks

Algorithm len(m) (|m| = L)
Parse m as 〈LF 〉4‖R
if LF ≤ 5 or LF ≥ 218 then

return ⊥L

else if LF + 4 mod L 6= 0 then
return ⊥L

else
return LF

end if

These length checks are specific to OpenSSH.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 24/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH-CTR – Main Scheme

Algorithm K-SSH-CTR(k)

Ke
r← Ke(k)

Kt
r← Kt(k)

ctr
r← {0, 1}l

return Ke ,Kt , ctr

Algorithm E-SSH-CTRKe ,Kt (m)
if ste =⊥ then

return ⊥
end if
(me ,mt)← enc(m)
if me =⊥ then

ste ←⊥
return ⊥

else
c ← E-CTRKe (me)
τ ← TKt (mt)
return c‖τ

end if

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 25/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH-CTR – Main Scheme
Algorithm D-SSH-CTRKe ,Kt

(c)

if std =⊥ then
return ⊥

end if
cbuff ← cbuff‖c
if me = ε and |cbuff| ≥ L then

Parse cbuff as c̃‖A (where |c̃| = L)
me [1] ← D-CTRKe

(c̃)

LF ← len(me [1])
if LF =⊥L then

std ←⊥
return ⊥L

else
need = 4 + LF + maclen

end if
end if
if |cbuff| ≥ L then

if |cbuff| ≥ need then
Parse cbuff as c̄[1. . .n]‖τ‖B,
where |c̄[1. . .n]‖τ| = need,
and |τ| = maclen

me [2. . .n] ← D-CTRKe
(c̄[2. . .n])

me ← me [1]‖me [2. . .n]
mt ← SNd‖me
v ← VKt

(mt , τ)

if v = 0 then
std ←⊥
return ⊥A

else
m ← dec(me)
me ← ε, cbuff ← B
return m

end if
end if

end if

Stage 1:

Arbitrary length input c is appended to the
ciphertext buffer cbuff.

Stage 2:

Once cbuff contains the first block of
ciphertext, the packet length field is
extracted, and length checking is performed.

Stage 3:

Once cbuff contains sufficient data (as
determined by the variable need in stage 2),
decryption and MAC verification are
performed. Any remaining bytes (B) are
used to reinitatialise cbuff.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 26/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH-CTR – Main Scheme
Algorithm D-SSH-CTRKe ,Kt

(c)

if std =⊥ then
return ⊥

end if
cbuff ← cbuff‖c
if me = ε and |cbuff| ≥ L then

Parse cbuff as c̃‖A (where |c̃| = L)
me [1] ← D-CTRKe

(c̃)

LF ← len(me [1])
if LF =⊥L then

std ←⊥
return ⊥L

else
need = 4 + LF + maclen

end if
end if
if |cbuff| ≥ L then

if |cbuff| ≥ need then
Parse cbuff as c̄[1. . .n]‖τ‖B,
where |c̄[1. . .n]‖τ| = need,
and |τ| = maclen

me [2. . .n] ← D-CTRKe
(c̄[2. . .n])

me ← me [1]‖me [2. . .n]
mt ← SNd‖me
v ← VKt

(mt , τ)

if v = 0 then
std ←⊥
return ⊥A

else
m ← dec(me)
me ← ε, cbuff ← B
return m

end if
end if

end if

Stage 1:

Arbitrary length input c is appended to the
ciphertext buffer cbuff.

Stage 2:

Once cbuff contains the first block of
ciphertext, the packet length field is
extracted, and length checking is performed.

Stage 3:

Once cbuff contains sufficient data (as
determined by the variable need in stage 2),
decryption and MAC verification are
performed. Any remaining bytes (B) are
used to reinitatialise cbuff.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 26/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH-CTR – Main Scheme
Algorithm D-SSH-CTRKe ,Kt

(c)

if std =⊥ then
return ⊥

end if
cbuff ← cbuff‖c
if me = ε and |cbuff| ≥ L then

Parse cbuff as c̃‖A (where |c̃| = L)
me [1] ← D-CTRKe

(c̃)

LF ← len(me [1])
if LF =⊥L then

std ←⊥
return ⊥L

else
need = 4 + LF + maclen

end if
end if
if |cbuff| ≥ L then

if |cbuff| ≥ need then
Parse cbuff as c̄[1. . .n]‖τ‖B,
where |c̄[1. . .n]‖τ| = need,
and |τ| = maclen

me [2. . .n] ← D-CTRKe
(c̄[2. . .n])

me ← me [1]‖me [2. . .n]
mt ← SNd‖me
v ← VKt

(mt , τ)

if v = 0 then
std ←⊥
return ⊥A

else
m ← dec(me)
me ← ε, cbuff ← B
return m

end if
end if

end if

Stage 1:

Arbitrary length input c is appended to the
ciphertext buffer cbuff.

Stage 2:

Once cbuff contains the first block of
ciphertext, the packet length field is
extracted, and length checking is performed.

Stage 3:

Once cbuff contains sufficient data (as
determined by the variable need in stage 2),
decryption and MAC verification are
performed. Any remaining bytes (B) are
used to reinitatialise cbuff.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 26/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH-CTR – Main Scheme
Algorithm D-SSH-CTRKe ,Kt

(c)

if std =⊥ then
return ⊥

end if
cbuff ← cbuff‖c
if me = ε and |cbuff| ≥ L then

Parse cbuff as c̃‖A (where |c̃| = L)
me [1] ← D-CTRKe

(c̃)

LF ← len(me [1])
if LF =⊥L then

std ←⊥
return ⊥L

else
need = 4 + LF + maclen

end if
end if
if |cbuff| ≥ L then

if |cbuff| ≥ need then
Parse cbuff as c̄[1. . .n]‖τ‖B,
where |c̄[1. . .n]‖τ| = need,
and |τ| = maclen

me [2. . .n] ← D-CTRKe
(c̄[2. . .n])

me ← me [1]‖me [2. . .n]
mt ← SNd‖me
v ← VKt

(mt , τ)

if v = 0 then
std ←⊥
return ⊥A

else
m ← dec(me)
me ← ε, cbuff ← B
return m

end if
end if

end if

Stage 1:

Arbitrary length input c is appended to the
ciphertext buffer cbuff.

Stage 2:

Once cbuff contains the first block of
ciphertext, the packet length field is
extracted, and length checking is performed.

Stage 3:

Once cbuff contains sufficient data (as
determined by the variable need in stage 2),
decryption and MAC verification are
performed. Any remaining bytes (B) are
used to reinitatialise cbuff.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 26/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

SSH-CTR – Main Scheme
Algorithm D-SSH-CTRKe ,Kt

(c)

if std =⊥ then
return ⊥

end if
cbuff ← cbuff‖c
if me = ε and |cbuff| ≥ L then

Parse cbuff as c̃‖A (where |c̃| = L)
me [1] ← D-CTRKe

(c̃)

LF ← len(me [1])
if LF =⊥L then

std ←⊥
return ⊥L

else
need = 4 + LF + maclen

end if
end if
if |cbuff| ≥ L then

if |cbuff| ≥ need then
Parse cbuff as c̄[1. . .n]‖τ‖B,
where |c̄[1. . .n]‖τ| = need,
and |τ| = maclen

me [2. . .n] ← D-CTRKe
(c̄[2. . .n])

me ← me [1]‖me [2. . .n]
mt ← SNd‖me
v ← VKt

(mt , τ)

if v = 0 then
std ←⊥
return ⊥A

else
m ← dec(me)
me ← ε, cbuff ← B
return m

end if
end if

end if

Stage 1:

Arbitrary length input c is appended to the
ciphertext buffer cbuff.

Stage 2:

Once cbuff contains the first block of
ciphertext, the packet length field is
extracted, and length checking is performed.

Stage 3:

Once cbuff contains sufficient data (as
determined by the variable need in stage 2),
decryption and MAC verification are
performed. Any remaining bytes (B) are
used to reinitatialise cbuff.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 26/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

New Security Model

We now need a new security model which considers decryption with
buffers.

Our analysis can then capture exactly how an implementation
operates.

In particular, this gives adversaries all the capabilities required for
APW style plaintext-recovery attacks.

This makes our analysis much more meaningful in practice.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 27/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

New Security Model

We now need a new security model which considers decryption with
buffers.

Our analysis can then capture exactly how an implementation
operates.

In particular, this gives adversaries all the capabilities required for
APW style plaintext-recovery attacks.

This makes our analysis much more meaningful in practice.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 27/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

New Security Model

We now need a new security model which considers decryption with
buffers.

Our analysis can then capture exactly how an implementation
operates.

In particular, this gives adversaries all the capabilities required for
APW style plaintext-recovery attacks.

This makes our analysis much more meaningful in practice.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 27/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

New Security Model

We now need a new security model which considers decryption with
buffers.

Our analysis can then capture exactly how an implementation
operates.

In particular, this gives adversaries all the capabilities required for
APW style plaintext-recovery attacks.

This makes our analysis much more meaningful in practice.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 27/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

LOR-BSF-CCA

Left-or-right indistinguishability under chosen-ciphertext attack with
buffered stateful decryption (LOR-BSF-CCA).

The adversary wins if b′ = b. With advantage,

Advlor-bsf-cca = |Pr[b′ = b]− 1

2
|.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 28/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

LOR-BSF-CCA

We refer to decryption of a full ciphertext packet as a sequence of
decryption queries.

As with the decryption oracle in BKN’s model, our buffered
decryption oracle is stateful.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 29/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

LOR-BSF-CCA

We refer to decryption of a full ciphertext packet as a sequence of
decryption queries.

As with the decryption oracle in BKN’s model, our buffered
decryption oracle is stateful.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 29/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Our Main Result

Theorem

SSH-CTR[F] is LOR-BSF-CCA secure if:

F is a pseudorandom function family,

T (the tagging algorithm from MA) is a pseudorandom function
family,

MA is strongly unforgeable (SUF-CMA secure),

the adversary is restricted to at most 232 encryption queries and 232

sequences of decryption queries.

Advlor-bsf-cca
SSH-CTR[F] ≤ 2Advsuf-cma

MA + 2Advprf
F + 4Advprf

T

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 30/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Outline

1 SSH

2 First Formal Security Analysis

3 Attacks Against SSH

4 New Formal Security Analysis

5 Conclusion

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 31/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Summary

We have expanded the existing analysis of BKN by:

Developing a security model considering buffered decryption.
Giving a definition of SSH using counter mode that is closely linked
to the SSH RFCs and the OpenSSH implementation.

Drawback: Despite being as general as possible in our modelling of
SSH, our security results are now specific to OpenSSH.

Our approach is sufficiently powerful to incorporate the attacks of
APW.

This closes the gap that existed between the formal security analysis
of SSH and the way in which SSH should be (and is in practice)
implemented.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 32/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Summary

We have expanded the existing analysis of BKN by:

Developing a security model considering buffered decryption.
Giving a definition of SSH using counter mode that is closely linked
to the SSH RFCs and the OpenSSH implementation.

Drawback: Despite being as general as possible in our modelling of
SSH, our security results are now specific to OpenSSH.

Our approach is sufficiently powerful to incorporate the attacks of
APW.

This closes the gap that existed between the formal security analysis
of SSH and the way in which SSH should be (and is in practice)
implemented.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 32/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Summary

We have expanded the existing analysis of BKN by:

Developing a security model considering buffered decryption.
Giving a definition of SSH using counter mode that is closely linked
to the SSH RFCs and the OpenSSH implementation.

Drawback: Despite being as general as possible in our modelling of
SSH, our security results are now specific to OpenSSH.

Our approach is sufficiently powerful to incorporate the attacks of
APW.

This closes the gap that existed between the formal security analysis
of SSH and the way in which SSH should be (and is in practice)
implemented.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 32/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Summary

We have expanded the existing analysis of BKN by:

Developing a security model considering buffered decryption.
Giving a definition of SSH using counter mode that is closely linked
to the SSH RFCs and the OpenSSH implementation.

Drawback: Despite being as general as possible in our modelling of
SSH, our security results are now specific to OpenSSH.

Our approach is sufficiently powerful to incorporate the attacks of
APW.

This closes the gap that existed between the formal security analysis
of SSH and the way in which SSH should be (and is in practice)
implemented.

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 32/33

SSH First Formal Security Analysis Attacks Against SSH New Formal Security Analysis Conclusion

Thanks

Questions?

Kenneth G. Paterson and Gaven J. Watson — Plaintext-Dependent Decryption: A Formal Security Treatment of SSH-CTR 33/33

	SSH
	First Formal Security Analysis
	Attacks Against SSH
	New Formal Security Analysis
	Conclusion

