
Secure Message Transmission
with Small Public Discussion

Juan Garay Clint Givens Rafail Ostrovsky
AT&T Labs—Research UCLA UCLA

2

The Original SMT Model [DDWY93]

• S

and R

connected by n channels (“wires”)‏

Receiver RSender S

• t wires (actively) corrupted by adversary A …

message

Problem: Transmit a message privately and reliably

An Abridged History of SMT
[Dolev-Dwork-Waarts-Yung’93]

Perfectly secure message transmission (PSMT)
Requires majority of uncorrupted wires
2 rounds necessary, sufficient (in general)

[Sayeed-AbuAmara’96, Srinathan-Narayanan-
PanduRangan’04, Agarwal-Cramer-deHaan’06,
Fitzi-Franklin-Garay-Vardhan’07, Kurosawa-
Suzuki’08]

PSMT comm. complexity = Ω(Mn/(n-2t)) [SNP’04]

4

SMT by Public Discussion (SMT-PD) [GO08]

• S

and R

connected by n channels (“wires”)‏

Receiver RSender S

• … plus an (authentic and reliable) public channel
• t wires (actively) corrupted by adversary A …

message

Problem: Transmit a message privately and reliably

A Brief History of SMT-PD
[Franklin-Wright’98] Perfect reliability is
impossible if majority of wires are corrupt

[Garay-Ostrovsky’08] Protocol:
3 rounds, 2 public rounds
public communication = O(Mn)
private communication = O(Mn)

[Shi-Jian-SafaviNaini-Tuhin’09]
3 rounds, 2 public rounds is optimal
public communication O(M)
private-wire communication O(Mn)

SMT(-PD): Motivation
Unconditionally secure multiparty computation:

Possible if < 1/3 of players are corrupt
[BGW’88, CCD’88]

Private point-to-point channels sufficient…

…but what if only some
of the nodes are
connected?

SMT(-PD): Motivation (cont'd)
Idea! [GO’08]: Simulate private point-to-point
channels using SMT protocol

SMT requires connectivity at least 2t+1

…Can we do better?

SMT-PD To The Rescue!
Yes! Can even get constant connectivity (!)
[GO’08]

…but now some of the good guys might be
totally cut off from the others…

So we give up on
correctness and
privacy for these
poor lost souls.

SMT-PD To The Rescue!
Idea! [GO’08] Simulate point-to-point
connections using SMT-PD protocol

Possible even for n = t+1

The catch: Must
implement a public
channel between
Sender and Receiver.

Expensive step!

Implementing a Public Channel
Broadcast (aka Byzantine agreement) for partially
connected networks [DPPU’86, Upf’92, BG’93]

This is EXPENSIVE in rounds and in
communication

Question: Can we
minimize use of the
public channel in
SMT-PD?

Previous SMT-PD protocols get:
3 rounds, 2 public rounds (optimal [SJST09])

Public communication = O(M)
Private communication = O(Mn)

Perfect privacy, negligible reliability error
(optimal)

Question: Can we significantly reduce
public channel communication?

Question: Can we significantly reduce
private wire communication?

Our Results
Upper Bounds

Public communication = O(n log M)
previous: O(M)

Private communication = O(Mn/(n-t))
previous: O(Mn)

Lower Bounds
Private communication = Ω(Mn/(n-t))
(matches upper bound!)

Amortization
After 2 public rounds, no public rounds needed!

Rest of the talk...

Explain the upper bound
For lower bound and amortization, see paper.

General Structure of SMT-PD Protocol

1. (R S) Send lots of randomness over
each private wire.

S wants to send a message to R :

2. (R S) Send checks on public
channel to verify randomness hasn’t been
tampered with.
3. (S R) Discard tampered wires.
Combine usable randomness into one time
pad for message over public channel.

Starting point: Simple Integrity Checks

(1) Encode each wire’s randomness using
an error-correcting code.
(2) Reveal small subset of symbols.

(3) Reject if received word doesn’t match
(or is not a codeword!)

What do we get with Integrity Checks?

Suffices to reveal log(n/δ)
randomness on each wire

δ is the error parameter

Fleshing Out the Protocol: Integrity Checks

1. (R S) Send lots of randomness over
each private wire…

S wants to send a message to R :

2. (R S) Send checks on public
channel to verify randomness hasn’t been
tampered with…

encoded using an
Error-Correcting Code.

by opening a random
subset of codeword symbols.

Next Observation: Hiding the Message
Previous protocols combine randomness

by XORing all usable strings together…
Have to send O(M) randomness per wire!

More efficient:
Use extractor!

Next Observation: Hiding the Message
A has side information on secret-wire

randomness (from round 2 integrity checks!)

Use average-case extractor [DORS’04]

Fleshing Out the Protocol: Hiding Message
S wants to send a message to R :

3. (S R) Discard tampered wires.
Combine usable randomness…

2. (R S) Send checks on public
channel to verify randomness hasn’t been
tampered with… by opening a random
subset of codeword symbols.

using an
average-case extractor …into one time pad
for message over public channel.

What have we gained?
On each private wire we can send:

O(M / (n-t)) randomness

= total private-wires communication of
O(Mn / (n-t)) !

(with modest assumptions on size of M)

+ log(n/δ) extra randomness to account
for integrity checks

Now for Public Channel Communication…

cheap: Θ(n log(n/δ))

2. (R S) Send checks on public channel to
verify randomness hasn’t been tampered with by
opening a random subset of codeword symbols.

Idea! Why not send the blinded message
over the private wires?

expensive: Θ(M)

3. (S R) Discard tampered wires. Combine
usable randomness using an average-case
extractor into one time pad for message over
public channel

Why Not Send It Over Private Wires?

Issue 1: Won’t this raise private-wire
communication back to O(Mn), thus
negating all our hard-fought progress over
the last several slides!?!

Solution: …Let’s think about this later.

Why Not Send It Over Private Wires?
Issue 2: How will we keep the
adversary from tampering with it?

Issue 3: If we send the authentication at
the same time as we send the message
(Round 3), adversary can just choose a
tampering consistent with it…?

Solution: Let’s send a (short!)
authentication

on the public channel

Solution: Blind the authentication, too.

A Short Authentication, Publicly

• For short authenticator, we can use the
error-correction integrity checks again:

• Encode blinded message, send result
over

each private wire

• Reveal (logarithmic # of) random
symbols

on public channel

A Short Authentication, Publicly
• To hide authenticator, would like a small
(size ≈

log M) shared key between S and R.

• How to get it?
• Run a (small) SMT-PD protocol in parallel
with the main SMT-PD protocol!
• Since the key is ≈

log M, doesn’t hurt us

to send it over public channel in Round 3

Fleshing Out the Protocol: Parallel SMT-PDs

1a. (R S) Send lots of randomness over
each private wire, encoded using an Error-
Correcting Code

S wants to send a message to R :

1b. (R S) Send some more randomness over
each private wire, encoded using an Error-
Correcting Code

• (eventually used to blind message)

• (eventually used to blind authenticator)

Fleshing Out the Protocol: Parallel SMT-PDs
S wants to send a message to R :

2a. (R S) Send checks on public
channel to verify (1a)-randomness hasn’t
been tampered with, by opening a random
subset of codeword symbols

2b. (R S) Send checks on public channel to
verify (1b)-randomness hasn’t been tampered
with, by opening a random subset of codeword
symbols

Fleshing Out the Protocol: Parallel SMT-PDs
S wants to send a message to R :

3b. (S R) Combine usable (1a)
randomness using an average-case extractor,
into a one time pad for message over public
channel…

3a. (S R) Discard tampered wires.

Encode (msg+pad) using Error-
Correcting Code; send result over every private
wire.

Fleshing Out the Protocol: Parallel SMT-PDs
S wants to send a message to R :

3c. (S R) Combine usable (1b) randomness
using an average-case extractor, into a one time
pad for authenticator…

Construct auth by opening ECC(msg+pad) at
random subset of symbols; send (auth+pad) on
public channel

One Last Nagging Question…

Issue 1: Won’t this raise private-wire
communication back to O(Mn)!?!

Solution: Don’t send (msg+pad) over
every wire. (So wasteful!) Instead…

One Last Nagging Question…

First encode C == (msg+pad) into n
shares of size ≈

M/(n-t).

• Integrity-check each share on public
channel

• raises Rd. 3 public communication to
 O(n log M)

(so n-t correct shares reconstruct C).

Protocol in detail

R → S : (small) Choose random ri,small, |ri,small| = O(ksmall). Send
Ci,small = RS-Enc(ri,small) over each wire Wi, 1 ≤ i ≤ n.

(big) Choose random ri , |ri | = O(k). Send Ci = RS-Enc(ri) over
each wire, Wi , 1 ≤ i ≤ n.

R → S : (small) Open O(log(n/δ)) randomly chosen positions in Ci,small ,
1 ≤ i ≤ n.

(big) Open O(log(n/δ)) randomly chosen positions in Ci ,
1 ≤ i ≤ n.

Protocol in detail (cont’d)
S → R :

(small) αsmall = concatenate Ci,small for i non-faulty (pad w/ 0 Є Fq,small).
Put Wsec = Extq,small (αsmall). (Wsec Є

Fq

r,small ⇨

|Wsec | = msmall .)
(big) α

= concatenate Ci for i non-faulty (pad w/0 Є

Fq).

Let C = M + Extq (α), C Є

Fq
r.

Apply RS code Fq
r → Fq

kn: EncRS(C) = (D1 , D2 , …, Dn) Є

Fq
kn.

View Di as bit-string of length klog q. Apply binary ECC E’:
Ei = Enc(Di), |Ei | = ck log q.

Send Ei on wire Wi (if non-faulty);
send identities of faulty channels ;
send V = Wsec ⊕

{consistency checks for each Ei }.

Protocol in detail (cont’d)
S → R : (cont’d)

Receiver : Recover Wsec = Extq,small (αsmall) using non-faulty
Ci,small ’s.

Use V, Wsec to get consistency checks for Ei ’s.
Interpolate correct Ei ’s to recover C = M + Extq (α).
Find Extq (α) using non-faulty Ci ’s, subtract to get M.

Conclusions
SMT-PD with simultaneously:
•

logarithmic (in message size) public

communication and
• optimal private-wire communication
With an errorless extractor for symbol-

fixing sources, we get perfect privacy
Matching private communication lower

bounds
Save even more public rounds/comm.

complexity with amortization

References

Full paper available from the Cryptology ePrint
Archive:

eprint.iacr.org/2009/519

Secure Message Transmission
with Small Public Discussion

Juan Garay Clint Givens Rafail Ostrovsky
AT&T Labs—Research UCLA UCLA

	Secure Message Transmission with Small Public Discussion
	The Original SMT Model [DDWY93]
	An Abridged History of SMT
	SMT by Public Discussion (SMT-PD) [GO08]
	A Brief History of SMT-PD
	SMT(-PD): Motivation
	SMT(-PD): Motivation (cont'd)‏
	SMT-PD To The Rescue!
	SMT-PD To The Rescue!
	Implementing a Public Channel
	Previous SMT-PD protocols get:
	Our Results
	Rest of the talk...
	General Structure of SMT-PD Protocol
	Starting point: Simple Integrity Checks
	What do we get with Integrity Checks?
	Fleshing Out the Protocol: Integrity Checks
	Next Observation: Hiding the Message
	Next Observation: Hiding the Message
	Fleshing Out the Protocol: Hiding Message
	What have we gained?
	Now for Public Channel Communication…
	Why Not Send It Over Private Wires?
	Why Not Send It Over Private Wires?
	A Short Authentication, Publicly
	A Short Authentication, Publicly
	Fleshing Out the Protocol: Parallel SMT-PDs
	Fleshing Out the Protocol: Parallel SMT-PDs
	Fleshing Out the Protocol: Parallel SMT-PDs
	Fleshing Out the Protocol: Parallel SMT-PDs
	One Last Nagging Question…
	One Last Nagging Question…
	Protocol in detail
	Protocol in detail (cont’d)‏
	Protocol in detail (cont’d)‏
	Conclusions
	References
	Secure Message Transmission with Small Public Discussion

