Secure Message Transmission with Small Public Discussion

Juan GarayClint GivensRafail OstrovskyAT&T Labs—ResearchUCLAUCLA

The Original SMT Model [DDWY93]

Problem: Transmit a message *privately* and *reliably*

- *S* and *R* connected by *n* channels ("wires")
- *t* wires (actively) corrupted by adversary *A* ...

An Abridged History of SMT

- [Dolev-Dwork-Waarts-Yung'93]
 - Perfectly secure message transmission (PSMT)
 - Requires majority of uncorrupted wires
 - 2 rounds necessary, sufficient (in general)
- [Sayeed-AbuAmara'96, Srinathan-Narayanan-PanduRangan'04, Agarwal-Cramer-deHaan'06, Fitzi-Franklin-Garay-Vardhan'07, Kurosawa-Suzuki'08]
 - □ PSMT comm. complexity = $\Omega(Mn/(n-2t))$ [SNP'04]

SMT by Public Discussion (SMT-PD) [GO08]

Problem: Transmit a message *privately* and *reliably*

- *S* and *R* connected by *n* channels ("wires")
- *t* wires (actively) corrupted by adversary *A* ...
- ... plus an (authentic and reliable) public channel

A Brief History of SMT-PD

- [Franklin-Wright'98] Perfect reliability is impossible if majority of wires are corrupt
- [Garay-Ostrovsky'08] Protocol:
 - 3 rounds, 2 public rounds
 - \Box public communication = O(Mn)
 - \Box private communication = O(Mn)
- [Shi-Jian-SafaviNaini-Tuhin'09]
 - □ 3 rounds, 2 public rounds is *optimal*
 - public communication O(M)
 - □ private-wire communication O(Mn)

SMT(-PD): Motivation

 Unconditionally secure multiparty computation:
 Possible if < 1/3 of players are corrupt [BGW'88, CCD'88]

Private point-to-point channels sufficient...

...but what if only some of the nodes are connected?

SMT(-PD): Motivation (cont'd)

- Idea! [GO'08]: Simulate private point-to-point channels using SMT protocol
 - SMT requires connectivity at least 2t+1
 - □ ...Can we do better?

SMT-PD To The Rescue!

- Yes! Can even get constant connectivity (!) [GO'08]
 - □ ...but now some of the good guys might be totally cut off from the others...

So we give up on correctness and privacy for these poor lost souls.

SMT-PD To The Rescue!

- Idea! [GO'08] Simulate point-to-point connections using SMT-PD protocol
 - \Box Possible even for n = t+1

The catch: Must implement a public channel between Sender and Receiver.
 Expensive step!

Implementing a Public Channel

- Broadcast (aka Byzantine agreement) for partially connected networks [DPPU'86, Upf'92, BG'93]
 - This is EXPENSIVE in rounds and in communication

Question: Can we minimize use of the public channel in SMT-PD?

Previous SMT-PD protocols get:

- 3 rounds, 2 public rounds (optimal [SJST09])
- Perfect privacy, negligible reliability error (optimal)
- Public communication = O(M)
- Private communication = O(Mn)

Question: Can we significantly reduce public channel communication?

Question: Can we significantly reduce private wire communication?

Our Results

Upper Bounds

Public communication = O(n log M)
 previous: O(M)

Private communication = O(Mn/(n-t))
 previous: O(Mn)

Lower Bounds

Private communication = Ω(Mn/(n-t)) (matches upper bound!)

Amortization

After 2 public rounds, no public rounds needed!

Rest of the talk...

Explain the upper bound

For lower bound and amortization, see paper.

General Structure of SMT-PD Protocol

- S wants to send a message to R:
- 1. ($\mathcal{R} \rightarrow S$) Send lots of randomness over each private wire.
- 2. ($\mathcal{R} \rightarrow S$) Send checks on public channel to verify randomness hasn't been tampered with.

3. ($S \rightarrow \Re$) Discard tampered wires. Combine usable randomness into one time pad for message over public channel.

Starting point: Simple Integrity Checks

(1) Encode each wire's randomness using an error-correcting code.

(2) Reveal small subset of symbols.

(3) Reject if received word doesn't match (or is not a codeword!)

What do we get with Integrity Checks?

- Suffices to reveal log(n/δ) randomness on each wire
 - \bullet δ is the error parameter

Fleshing Out the Protocol: Integrity Checks

S wants to send a message to R:

1. ($\mathcal{R} \rightarrow S$) Send lots of randomness over each private wire... encoded using an Error-Correcting Code.

2. $(\mathcal{R} \rightarrow S)$ Send **checks** on public channel to verify randomness hasn't been tampered with... by opening a random subset of codeword symbols.

Next Observation: Hiding the Message

Previous protocols combine randomness by XORing all usable strings together...

Have to send O(M) randomness per wire!

Next Observation: Hiding the Message

A has side information on secret-wire randomness (from round 2 integrity checks!)

Use average-case extractor [DORS'04]

Fleshing Out the Protocol: Hiding Message

- S wants to send a message to R:
- 2. $(\mathcal{R} \rightarrow S)$ Send checks on public channel to verify randomness hasn't been tampered with... by opening a random subset of codeword symbols.

3. $(S \rightarrow R)$ Discard tampered wires. Combine usable randomness... *using an average-case extractor* ...into **one time pad** for message over public channel.

What have we gained?

- On each private wire we can send:
- O(M / (n-t)) randomness
- + $log(n/\delta)$ extra randomness to account for integrity checks
- total private-wires communication of O(Mn / (n-t)) !

(with modest assumptions on size of M)

Now for Public Channel Communication... 2. $(\mathcal{R} \rightarrow S)$ Send checks on public channel to verify randomness hasn't been tampered with by opening a random subset of codeword symbols.

<u>cheap</u>: Θ(n log(n/δ))

3. $(S \rightarrow R)$ Discard tampered wires. Combine us table a rawdom see using a second the abla declares sage extractor intoverse using a second for message over public channel

expensive: Θ(M)

Why Not Send It Over Private Wires?

Issue 1: Won't this raise private-wire communication back to O(Mn), thus negating all our hard-fought progress over the last several slides!?!

Solution: ... Let's think about this later.

Why Not Send It Over Private Wires?

Issue 2: How will we keep the adversary from tampering with it?

Solution: Let's send a (short!) authentication on the public channel

Issue 3: If we send the authentication at the same time as we send the message (Round 3), adversary can just choose a tampering consistent with it...?

Solution: Blind the authentication, too.

A Short Authentication, Publicly

- For short authenticator, we can use the error-correction integrity checks again:
 - Encode blinded message, send result over each private wire
 - Reveal (logarithmic # of) random symbols on public channel

A Short Authentication, Publicly

- To hide authenticator, would like a small (size $\approx \log M$) shared key between S and R.
 - How to get it?
 - Run a (small) SMT-PD protocol in parallel with the main SMT-PD protocol!
 - Since the key is \approx log M, doesn't hurt us to send it over public channel in Round 3

S wants to send a message to R:

1a. $(\mathcal{R} \rightarrow S)$ Send lots of randomness over each private wire, encoded using an Error-Correcting Code

• (eventually used to blind message)

1b. $(\mathcal{R} \rightarrow S)$ Send some more **randomness** over each private wire, encoded using an Error-Correcting Code

• (eventually used to blind authenticator)

S wants to send a message to R:

2a. ($\Re \rightarrow S$) Send checks on public channel to verify (1a)-randomness hasn't been tampered with, by opening a random subset of codeword symbols

2b. $(\mathcal{R} \rightarrow S)$ Send checks on public channel to verify (1b)-randomness hasn't been tampered with, by opening a random subset of codeword symbols

- S wants to send a message to R:
- 3a. $(S \rightarrow R)$ Discard tampered wires.

3b. $(S \rightarrow \mathbb{R})$ Combine usable (1a) randomness using an average-case extractor, into a one time pad for message over public channel... Encode (msg+pad) using Error-Correcting Code; send result over every private wire.

S wants to send a message to \mathcal{R} :

3c. $(S \rightarrow R)$ *Combine usable (1b) randomness using an average-case extractor, into a one time pad for authenticator...*

Construct **auth** by opening ECC(msg+pad) at random subset of symbols; send (auth+pad) on public channel

One Last Nagging Question...

Issue 1: Won't this raise private-wire communication back to O(Mn)!?!

Solution: Don't send (msg+pad) over *every wire*. (So wasteful!) Instead...

One Last Nagging Question...

First encode C == (msg+pad) into n shares of size \approx M/(n-t).

(so n-t correct shares reconstruct C).

- Integrity-check each share on public channel
 - raises Rd. 3 public communication to O(n log M)

Protocol in detail

 $\mathcal{R} \rightarrow \mathcal{S}$: (small) Choose random $r_{i,small}$, $|r_{i,small}| = O(k_{small})$. Send $C_{i,small} = RS-Enc(r_{i,small})$ over each wire W_i , $1 \le i \le n$. (big) Choose random r_i , $|r_i| = O(k)$. Send $C_i = RS-Enc(r_i)$ over each wire, W_i , $1 \le i \le n$. $\mathcal{R} \rightarrow \mathcal{S}$: (small) Open O(log(n/ δ)) randomly chosen positions in C_{i,small}, 1 < i < n(big) Open O(log(n/ δ)) randomly chosen positions in C_i, $1 \leq i \leq n$.

Protocol in detail (cont'd)

 $S \rightarrow \mathcal{R}:$ (small) $\alpha_{small} = \text{concatenate } C_{i,small} \text{ for i non-faulty (pad w/ 0 <math>\in F_{q,small}).$ Put $W_{sec} = Ext_{q,small}(\alpha_{small}).$ ($W_{sec} \in F_q^{r,small} \Rightarrow |W_{sec}| = m_{small}.$)
(big) α = concatenate C_i for i non-faulty (pad w/ 0 $\in F_q$).
Let $C = M + Ext_q(\alpha), C \in F_q^{r}.$ Apply RS code $F_q^{r} \rightarrow F_q^{kn}: EncRS(C) = (D_1, D_2, ..., D_n) \in F_q^{kn}.$ View D_i as bit-string of length klog q. Apply binary ECC E': $E_i = Enc(D_i), |E_i| = ck \log q.$

Send E_i on wire W_i (if non-faulty); send identities of faulty channels ; send V = $W_{sec} \oplus \{\text{consistency checks for each } E_i \}$.

Protocol in detail (cont'd)

• $S \rightarrow \mathcal{R}$: (cont'd)

Receiver : Recover $W_{sec} = Ext_{q,small}(\alpha_{small})$ using non-faulty $C_{i,small}$'s.

Use V, W_{sec} to get consistency checks for E_i 's. Interpolate correct E_i 's to recover $C = M + Ext_q(\alpha)$. Find $Ext_q(\alpha)$ using non-faulty C_i 's, subtract to get M.

Conclusions

SMT-PD with simultaneously:

- logarithmic (in message size) public communication and
- optimal private-wire communication

With an errorless extractor for symbolfixing sources, we get perfect privacy

Matching private communication lower bounds

Save even more public rounds/comm. complexity with amortization

Full paper available from the Cryptology ePrint Archive:

eprint.iacr.org/2009/519

Secure Message Transmission with Small Public Discussion

Juan GarayClint GivensRafail OstrovskyAT&T Labs—ResearchUCLAUCLA