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The Setting

I n players must evaluate an arithmetic (/boolean) circuit C.
I Up to t players may be corrupted.
I Perfect security (UC) against malicious and adaptive

adversaries.
I Assume secure point-to-point synchronous communication.
I Elements are in a prime field Zp.
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The Overhead of MPC

I Consider the total computational complexity for all players:

f · |C |+ g .

I f is the per-gate overhead.
I g should be dominated by f · |C | when |C | >> n.
I Best case: f = O(1).
I Our result: f = poly(log n, log |C |).
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Previous Work

I [DIKNS08]: poly(k , log n) overhead, but only computational
security.

I [BH06,DI06,DN07,HN07]: Õ(n) overhead.
I [DI06]: poly(log n) overhead with a constant number of

clients (i.e. players who give input or receive output).
I We want unconditional security and polylogarithmic overhead.
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Overview

I Basis is a traditional Shamir-sharing based protocol with
overhead n2 log n [Shamir79,BGW88,GRR98].

I We utilize packed secret-sharing [FY92].
I Multiplication is sped up using prepared pairs and VSS

protocols [BH08,DIKNS08].
I New Technique 1: Reorganize circuit for use of packed

sharing.
I New Technique 2: New VSS protocols for dealing with

permutations within shared blocks.
I Finally, boost the threshold with player virtualization

[Bracha87,Chaum89,. . . ,HM00,DIKNS08,Krøigaard10].
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Packed Secret-Sharing

We use the idea from [FY92]:

Ramp scheme, but we avoid the ramp. Lowers the threshold.
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Utilizing Packed Sharing

In the bad case:
1. Share single values [a], [b], [c], [d ].
2. Calculate G ([a], [b]) and F ([c], [d ]).

Here there is no advantage to using packed sharing.

6 / 19



Utilizing Packed Sharing

In the good case:
1. Let b1 = (a, c) and b2 = (b, d). Share [b1], [b2].
2. Calculate G ([b1], [b2]) = [(G (a, b),G (c , d))].

Idea: Set block size to Θ(n) and hope to divide the complexity by n.
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Technique 1: Transforming the Circuit

We transform C to get many good cases:

I Divide C into d layers in the natural way.
I Each layer depends only on previous layers for input.
I Transform C into C ′ in three steps.
I C ′ is computable in parallel, layer by layer.
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Technique 1: Transforming the Circuit

Step 1: Make sure all layers have the same type of gate.
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Technique 1: Transforming the Circuit

Step 2: Make sure all gates take two inputs.
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Technique 1: Transforming the Circuit

Step 3: Simplify permutations between layers.

No more permutations across blocks.
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A Beneš Network

[Beneš64,Waksman68]:

Models any permutation, can easily be converted to a circuit.
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Handling Permutations

I The Beneš network will handle permutations across blocks.
I Between each two layers, it requires a permutation.
I Either the permutation permutes all blocks (trivial).
I Or it performs the same permutation within each block.
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Handling Permutations

Protocol to permute within a block:

1. Requires shared [r ], [π(r)] (from new VSS protocol).
2. Mask input:

[x + r ] = [x ] + [r ].

3. Open to party i .
4. Party i VSS shares [π(x + r)] using new VSS protocol that

also proves correct permutation.
5. Unmask output:

[π(x)] = [π(x + r)]− [π(r)].

Note: new VSS protocols build on [BH08,DIKNS08].
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Precise Result

I Security is perfect, active and adaptive.
I Threshold: For any ε > 0: (1/3− ε)n.
I For circuit size s and depth d , no. arithmetic operations:

O(log2 n log s · s + poly(n, log s) · d2)

I No improvements for very narrow and deep circuits.
I For most natural circuits, the second term is linear in d .
I Additive term can be reduced to poly(n, log s) · d log d for a

factor O(log d) additional overhead.
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Applications to Two-Party Cryptography

Possible applications in reducing the overhead of:
I Zero-knowledge proofs.
I Secure two-party computation.
I Other useful special cases.

[IKOS08] define the computational overhead of a primitive as:

circuit size of secure impl.
circuit size of correct but insecure impl.

where input size →∞.
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Applications to Two-Party Cryptography

Consider the computational overhead:

I Standard implementations of encryption, signatures, ZK
proofs, . . . , have overhead poly(k).

I One could hope for O(1).
I [IKOS08]: O(1) overhead for 2PC in the semihonest model.
I Open: Improve on poly(k) for ZK and 2PC in the malicious

model.
I New: Combining our protocol with

[IKOS07,IKOS08,IPS08,ACPS09] we get:

1. ZK with poly(log k) overhead under standard assumptions.
2. 2PC with poly(log k) overhead under a non-standard

assumption or preprocessing.
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Thank you!

Questions?
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