
Perfectly Secure Multiparty Computation
and the Computational Overhead of Cryptography

Ivan Damgård1 Yuval Ishai2 Mikkel Krøigaard3

1University of Aarhus

2Technion and UCLA

3Eindhoven University of Technology

June 2, 2010

The Setting

I n players must evaluate an arithmetic (/boolean) circuit C.
I Up to t players may be corrupted.
I Perfect security (UC) against malicious and adaptive

adversaries.
I Assume secure point-to-point synchronous communication.
I Elements are in a prime field Zp.

1 / 19

The Overhead of MPC

I Consider the total computational complexity for all players:

f · |C |+ g .

I f is the per-gate overhead.
I g should be dominated by f · |C | when |C | >> n.
I Best case: f = O(1).
I Our result: f = poly(log n, log |C |).

2 / 19

Previous Work

I [DIKNS08]: poly(k , log n) overhead, but only computational
security.

I [BH06,DI06,DN07,HN07]: Õ(n) overhead.
I [DI06]: poly(log n) overhead with a constant number of

clients (i.e. players who give input or receive output).
I We want unconditional security and polylogarithmic overhead.

3 / 19

Overview

I Basis is a traditional Shamir-sharing based protocol with
overhead n2 log n [Shamir79,BGW88,GRR98].

I We utilize packed secret-sharing [FY92].
I Multiplication is sped up using prepared pairs and VSS

protocols [BH08,DIKNS08].
I New Technique 1: Reorganize circuit for use of packed

sharing.
I New Technique 2: New VSS protocols for dealing with

permutations within shared blocks.
I Finally, boost the threshold with player virtualization

[Bracha87,Chaum89,. . . ,HM00,DIKNS08,Krøigaard10].

4 / 19

Packed Secret-Sharing

We use the idea from [FY92]:

Ramp scheme, but we avoid the ramp. Lowers the threshold.
5 / 19

Utilizing Packed Sharing

In the bad case:
1. Share single values [a], [b], [c], [d].
2. Calculate G ([a], [b]) and F ([c], [d]).

Here there is no advantage to using packed sharing.

6 / 19

Utilizing Packed Sharing

In the good case:
1. Let b1 = (a, c) and b2 = (b, d). Share [b1], [b2].
2. Calculate G ([b1], [b2]) = [(G (a, b),G (c , d))].

Idea: Set block size to Θ(n) and hope to divide the complexity by n.

7 / 19

Technique 1: Transforming the Circuit

We transform C to get many good cases:

I Divide C into d layers in the natural way.
I Each layer depends only on previous layers for input.
I Transform C into C ′ in three steps.
I C ′ is computable in parallel, layer by layer.

8 / 19

Technique 1: Transforming the Circuit

Step 1: Make sure all layers have the same type of gate.

9 / 19

Technique 1: Transforming the Circuit

Step 2: Make sure all gates take two inputs.

10 / 19

Technique 1: Transforming the Circuit

Step 3: Simplify permutations between layers.

No more permutations across blocks.

11 / 19

A Beneš Network

[Beneš64,Waksman68]:

Models any permutation, can easily be converted to a circuit.

12 / 19

Handling Permutations

I The Beneš network will handle permutations across blocks.
I Between each two layers, it requires a permutation.
I Either the permutation permutes all blocks (trivial).
I Or it performs the same permutation within each block.

13 / 19

Handling Permutations

Protocol to permute within a block:

1. Requires shared [r], [π(r)] (from new VSS protocol).
2. Mask input:

[x + r] = [x] + [r].

3. Open to party i .
4. Party i VSS shares [π(x + r)] using new VSS protocol that

also proves correct permutation.
5. Unmask output:

[π(x)] = [π(x + r)]− [π(r)].

Note: new VSS protocols build on [BH08,DIKNS08].

14 / 19

Precise Result

I Security is perfect, active and adaptive.
I Threshold: For any ε > 0: (1/3− ε)n.
I For circuit size s and depth d , no. arithmetic operations:

O(log2 n log s · s + poly(n, log s) · d2)

I No improvements for very narrow and deep circuits.
I For most natural circuits, the second term is linear in d .
I Additive term can be reduced to poly(n, log s) · d log d for a

factor O(log d) additional overhead.

15 / 19

Applications to Two-Party Cryptography

Possible applications in reducing the overhead of:
I Zero-knowledge proofs.
I Secure two-party computation.
I Other useful special cases.

[IKOS08] define the computational overhead of a primitive as:

circuit size of secure impl.
circuit size of correct but insecure impl.

where input size →∞.

16 / 19

Applications to Two-Party Cryptography

Possible applications in reducing the overhead of:
I Zero-knowledge proofs.
I Secure two-party computation.
I Other useful special cases.

[IKOS08] define the computational overhead of a primitive as:

circuit size of secure impl.
circuit size of correct but insecure impl.

where input size →∞.

17 / 19

Applications to Two-Party Cryptography

Consider the computational overhead:

I Standard implementations of encryption, signatures, ZK
proofs, . . . , have overhead poly(k).

I One could hope for O(1).
I [IKOS08]: O(1) overhead for 2PC in the semihonest model.
I Open: Improve on poly(k) for ZK and 2PC in the malicious

model.
I New: Combining our protocol with

[IKOS07,IKOS08,IPS08,ACPS09] we get:

1. ZK with poly(log k) overhead under standard assumptions.
2. 2PC with poly(log k) overhead under a non-standard

assumption or preprocessing.

18 / 19

Thank you!

Questions?

19 / 19

