Perfectly Secure Multiparty Computation

and the Computational Overhead of Cryptography

lvan Damgard! Yuval Ishai® Mikkel Krgigaard®

LUniversity of Aarhus
2Technion and UCLA

3Eindhoven University of Technology

June 2, 2010

» n players must evaluate an arithmetic (/boolean) circuit C.

v

Up to t players may be corrupted.

v

Perfect security (UC) against malicious and adaptive
adversaries.

v

Assume secure point-to-point synchronous communication.

v

Elements are in a prime field Z,.

1/19

The Overhead of MPC

» Consider the total computational complexity for all players:

f-|Cl+g.

v

f is the per-gate overhead.

g should be dominated by f - |C| when |C| >> n.
Best case: f = O(1).

Our result: f = poly(log n, log|C|).

v

v

v

2/19

» [DIKNSO08]: poly(k, log n) overhead, but only computational
security.

» [BH06,D106,DN07,HN07]: O(n) overhead.

» [DI06]: poly(log n) overhead with a constant number of
clients (i.e. players who give input or receive output).

» We want unconditional security and polylogarithmic overhead.

3/19

» Basis is a traditional Shamir-sharing based protocol with
overhead n?log n [Shamir79,BGW88,GRR98].

» We utilize packed secret-sharing [FY92].

» Multiplication is sped up using prepared pairs and VSS
protocols [BH08,DIKNS08].

» New Technique 1: Reorganize circuit for use of packed
sharing.

» New Technique 2: New VSS protocols for dealing with
permutations within shared blocks.

» Finally, boost the threshold with player virtualization
[Bracha87,Chaum89,. .. ,HM00,DIKNS08,Krgigaard10].

4/19

Packed Secret-Sharing

We use the idea from [FY92]:

x - shares

X - the secrets

x/X/’_

Ramp scheme, but we avoid the ramp. Lowers the threshold.
5/19

Utilizing Packed Sharing

Good case Bad case
a —7 a3 —
G |— G(ab) G |— G(ab)
b — b—
[¢ —
G [Gled) F — Fcd)
d — d —

In the bad case:
1. Share single values [a], [b], [¢], [d].

2. Calculate G([a], [b]) and F([c],[d]).
Here there is no advantage to using packed sharing.

6/19

Utilizing Packed Sharing

Good case Bad case
a —7 a3 —
G |— G(ab) G |— G(ab)
b — b—
[¢ —
G [Gled) F — Fcd)
d — d —

In the good case:
1. Let by = (a,c) and by = (b, d). Share [b1], [b2].

2. Calculate G([b1], [b2]) = [(G(a, b), G(c, d))].
Idea: Set block size to ©(n) and hope to divide the complexity by n.

7/19

Technique 1: Transforming the Circuit

We transform C to get many good cases:

v

Divide C into d layers in the natural way.

v

Each layer depends only on previous layers for input.

v

Transform C into C’ in three steps.

v

C’ is computable in parallel, layer by layer.

8/19

Technique 1: Transforming the Circuit

Step 1: Make sure all layers have the same type of gate.

s 1
:*-— Split :*—-
- N
1+ 1

9/19

Technique 1: Transforming the Circuit

Step 2: Make sure all gates take two inputs.

Add tree +

-o> T T

L]
+

10/19

Technique 1: Transforming the Circuit

Step 3: Simplify permutations between layers.

Permutation

|

Insert permutation
circuit

- Permutation |
L1 2| > |wu craut L2
| | (Benes network) ||

No more permutations across blocks.

11/19

A Benes Network

[Benes64,Waksman68]:

NIANZS =N
\W ><><X/

Q) Q)
VAN OGO VAN

L NN N/ N\

Models any permutation, can easily be converted to a circuit.

Handling Permutations

The Benes network will handle permutations across blocks.

v

v

Between each two layers, it requires a permutation.

v

Either the permutation permutes all blocks (trivial).

v

Or it performs the same permutation within each block.

13/19

Handling Permutations

Protocol to permute within a block:

1. Requires shared [r], [7(r)] (from new VSS protocol).

2. Mask input:
[x 4+ r] = Ix] +[r].

3. Open to party i.

4. Party i VSS shares [r(x + r)] using new VSS protocol that
also proves correct permutation.

5. Unmask output:

[7 ()] = [r(x +)] = [=(r)].
Note: new VSS protocols build on [BH08,DIKNSO08].

14/19

Precise Result

» Security is perfect, active and adaptive.
Threshold: For any € > 0: (1/3 —¢)n.
For circuit size s and depth d, no. arithmetic operations:

v

v

O(log® nlog s - s + poly(n, log s) - d?)

» No improvements for very narrow and deep circuits.

v

For most natural circuits, the second term is linear in d.

v

Additive term can be reduced to poly(n,logs) - dlogd for a
factor O(log d) additional overhead.

15/19

Applications to Two-Party Cryptography

Possible applications in reducing the overhead of:
» Zero-knowledge proofs.
» Secure two-party computation.

» Other useful special cases.

16 /19

Applications to Two-Party Cryptography

Possible applications in reducing the overhead of:
» Zero-knowledge proofs.
» Secure two-party computation.

» Other useful special cases.

[IKOSO08] define the computational overhead of a primitive as:

circuit size of secure impl.

circuit size of correct but insecure impl.

where input size — oco.

17/19

Applications to Two-Party Cryptography

Consider the computational overhead:
» Standard implementations of encryption, signatures, ZK
proofs, ..., have overhead poly(k).
» One could hope for O(1).
» [IKOS08]: O(1) overhead for 2PC in the semihonest model.

» Open: Improve on poly(k) for ZK and 2PC in the malicious
model.

» New: Combining our protocol with
[IKOS07,IKOS08,IPS08,ACPS09] we get:

1. ZK with poly(log k) overhead under standard assumptions.
2. 2PC with poly(log k) overhead under a non-standard
assumption or preprocessing.

18/19

Thank youl

Questions?

