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Composite-order bilinear groups Background

Composite-order bilinear groups:
What are they?

e Cyclic groups G, G of order N = py - - - py;
o Nondegenerate, bilinear pairing e : G x G — Gy;

@ Useful for crypto if (some version of) the
holds in G:

{x &G :ord(x) <N} and {x &G}

computationally indistinguishable.

@ In particular, factoring N must be infeasible.
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Composite-order bilinear groups Background

Composite-order bilinear groups:
What are they good for?

Used in recent years to solve many cryptographic problems:
@ “Somewhat homomorphic” encryption [BGNO5]
e Traitor tracing [BSWO06]
e Ring and group signatures [BWO07, SWO07]

NIZK proof systems [GOS06, GS08]

Attribute-based encryption [KSW08, LOSTW10]

Fully secure HIBE [W09, LW10]
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Composite-order bilinear groups Background

Composite-order bilinear groups:
Some drawbacks

Groups are instantiated using supersingular elliptic curves E over finite
fields Fy, g = —1 (mod N) prime.

o Groups are very large: N ~ 21924 to prevent factoring attack.

e Pairings are very slow [Scott].
usual pairing-based crypto: | G C E(Fg4) ~ 160 bits

(prime-order MNT curve) | G; C F7¢ ~ 1024 bits

~ 3 ms pairing
composite-order groups: | G C E(Fq) ~ 1024 bits

(supersingular curve) | G; C F7, ~ 2048 bits
~ 150 ms pairing

Conclusion: using composite-order elliptic curves negates many advantages
of elliptic curve crypto.
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Composite-order bilinear groups Our contribution

Our goal:

Obtain of composite-order group cryptosystems using
of prime-order bilinear groups:

small group sizes
fast pairing
well studied assumptions

e Want a general conversion method.
@ Previous solutions [IP08, W09, LW10] ad-hoc (or at least opaque).
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Composite-order bilinear groups Our contribution

Our contribution

@ Abstract framework that captures the cryptographic properties of
composite-order bilinear groups.

@ Instantiations of groups with these properties using prime-order
bilinear groups.

@ Method for converting cryptosystems from composite-order groups to
prime-order groups.
o Not a black-box compiler; proofs need to be checked (fails for [LW10]).
@ Conversion of

@ "Somewhat homomorphic” encryption [BGNO5];
@ Traitor tracing [BSWO06];
© Attribute-based encryption [KSW03].
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WU P2 RTET Wl Subgroup decision problems

Generalizing the subgroup decision assumption

Generalized subgroup decision problem:

@ 5 groups G1 C G, Hy C H, G;

@ nondegenerate bilinear map e: G x H — G; (asymmetric)

o distinguish {x < G;} from {x & G}

or
distinguish {y < H;} from {y <& H}.
If both problems computationally infeasible, then
holds for (G, G1, H, Hi1, Gt, €).
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Sulbgieup desEEn peikine
A key observation [CS03, G04]

DDH is a subgroup decision problem!
@ Given group G; of order p, define G := Gy x Gy.
@ G; := random linear subgroup ((g,g”>)).
e Then (g¥,g%) € Gi1 & z = xy (mod p).
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@ Given group G; of order p, define G := Gy x Gy.
@ G; := random linear subgroup ((g,g”>)).
e Then (g¥,g%) € Gi1 & z = xy (mod p).
Extend to the (asymmetric) pairing setting:
o If &: G; x Gy — Gy is a pairing, define H := G, x Go.
@ Hy := random linear subgroup ((h, ).
o Definee: G x H— G; = Gy by

e((g.8"), (h. H)) := &(g. h)*e(g, h)°e(g’, h)°e(g’, h')".

@ Can define pairing into G; = G componentwise.
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Sulbgieup desEEn peikine
A key observation [CS03, G04]

DDH is a subgroup decision problem!
@ Given group G; of order p, define G := Gy x Gy.
@ G; := random linear subgroup ((g,g”>)).
e Then (g¥,g%) € Gi1 & z = xy (mod p).
Extend to the (asymmetric) pairing setting:
o If &: G; x Gy — Gy is a pairing, define H := G, x Go.
@ Hy := random linear subgroup ((h, ).
o Definee: G x H— G; = Gy by

e((g,8"): (h, ') = &(g, h)*e(g, h')"e(g’, h)°e(g’, H')".
@ Can define pairing into G; = G componentwise.

Theorem

If DDH assumption holds in Gy and G, then generalized subgroup decision
assumption holds for (G, G1, H, Hy, G, e).
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WU P2 RTET Wl Subgroup decision problems

But wait...
Isn't DDH easy in groups with a pairing?
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WU P2 RTET Wl Subgroup decision problems

But wait...
Isn't DDH easy in groups with a pairing?

© Not necessarily:
o DDH believed to be hard on pairing-friendly elliptic curves
when Gy is the , Gy is the

e Pairing is asymmetric (no efficient maps G1 < G»).
o Also called “SXDH" assumption.
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o DDH believed to be hard on pairing-friendly elliptic curves
when Gy is the , Gy is the
e Pairing is asymmetric (no efficient maps G1 < G»).
o Also called “SXDH" assumption.
9 Yes, if Gl = (Grg...
But the may still hold! (with k > 2)
o k-linear assumption [HK07, S07] generalizes DDH (is DDH when k = 1),
may hold in groups with k-linear map.
o Generalize DDH construction: G = H = G¥*1,
G; = Hy = random k-dimensional subgroup.
o k-linear assumption = subgroup decision assumption.
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WU P2 RTET Wl Subgroup decision problems

But wait...
Isn't DDH easy in groups with a pairing?

© Not necessarily:
o DDH believed to be hard on pairing-friendly elliptic curves
when Gy is the , Gy is the
e Pairing is asymmetric (no efficient maps G1 < G»).
o Also called “SXDH" assumption.
9 Yes, if Gl = GQ...
But the may still hold! (with k > 2)
o k-linear assumption [HK07, S07] generalizes DDH (is DDH when k = 1),
may hold in groups with k-linear map.
o Generalize DDH construction: G = H = G¥*1,
G; = Hy = random k-dimensional subgroup.
o k-linear assumption = subgroup decision assumption.

Solution (2) is less efficient: G is larger (more copies of G1) and not suited
to high security levels (bounded embedding degree for symmetric pairings).
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55 Gf (R
What about the pairing?

Can't use just any pairing e on product groups G and H — cryptosystems
require certain properties for correctness.
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What about the pairing?
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(1) pairing:

maps: m:G— G, m:H-—>H, x: G — G
kernels: Gy C kermy, Hi C kerma, G) C kerm,
pairing:  e(m1(g), m2(h)) = m:(e(g, h))
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55 Gf (R
What about the pairing?

Can't use just any pairing e on product groups G and H — cryptosystems
require certain properties for correctness.

(1) pairing:

maps: m:G— G, m:H-—>H, x: G — G
kernels: Gy C kermy, Hi C kerma, G) C kerm,
pairing:  e(m1(g), m2(h)) = m:(e(g, h))

() pairing:

groups: GG x+xG, HXH x---xH,
pairing: e(Gi, Hj) =1 for i # j.

In systems: use Gj to “blind” elements of G; remove blinding by applying
m1 (projecting) or pairing with elements of H, (cancelling).
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55 Gf (R
Projecting and cancelling pairings on product groups

View group elements as vectors g¥ = (g1, g*2).
Do linear algebra in the exponent.
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WU E P2 BT WTl  Types of pairings

Projecting and cancelling pairings on product groups

View group elements as vectors g¥ = (g1, g*2).
Do linear algebra in the exponent.
o pairing takes of vectors:

o Define e: G x H — G; := G} to be vector of all 4 componentwise
pairings & on Gy x Go.
e 71,2, T do linear projection in the exponent (details in paper).
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WU E P2 BT WTl  Types of pairings

Projecting and cancelling pairings on product groups

View group elements as vectors g¥ = (g1, g*2).
Do linear algebra in the exponent.

pairing takes of vectors:
Define e: G x H — G; := G to be vector of all 4 componentwise
pairings & on Gy x Go.
71, T2, ¢ do linear projection in the exponent (details in paper).
pairing takes of vectors:
Define e so that o .
e(g", h") = &(g, h)"".

Define subgroups using orthogonal vectors:

GL=(g"),G = (g"), Hi=(h") Ho=(h")
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The conversion process Our framework

How to convert a composite-order cryptosystem to
prime-order groups

@ Write the system using our abstract group framework, with
appropriate type of pairing.
e Transfer to asymmetric groups for greatest generality.
@ Translate security assumption to general framework.
o Check the security proof!

© Instantiate system and assumption using groups G, H constructed
from G, Go.

e e.g. generalized subgroup decision assumption instantiated as DDH.
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A camEt
Instantiating BGN Encryption in DDH groups G, Gy:

o PK: G =G32, G = {(g,8)), & = (g, &%), + similar in H = G3.

SK: x, y,z + analogues for H.
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SK: x, y,z + analogues for H.

@ Encryption in G: encode msg using g, blind with random elt of Gj.
Enc(m): r &£ Fp; C=(g",87)"(g.8") = (8. &™)

Encryption in H similar.
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@ Encryption in G: encode msg using g, blind with random elt of Gj.
Enc(m): r &£ Fp; C=(g",87)"(g.8") = (8. &™)

Encryption in H similar.
o Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
o Use projecting pairing e (vector of 4 pairings).
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@ Encryption in G: encode msg using g, blind with random elt of Gj.
Enc(m): r &£ Fp; C=(g",87)"(g.8") = (8. &™)

Encryption in H similar.
o Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
o Use projecting pairing e (vector of 4 pairings).
@ Decryption in G:
O Compute m(C) = (g7™H7)* - (g7") "1 = (g %)™
@ Take discrete log base m1(g) = g% (requires small message space).

Decryption in H similar; decryption in G; = G} more complicated.
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A camEt
Instantiating BGN Encryption in DDH groups G, Gy:

o PK: G =G32, G = {(g,8)), & = (g, &%), + similar in H = G3.
SK: x, y,z + analogues for H.

@ Encryption in G: encode msg using g, blind with random elt of Gj.
Enc(m): r &£ Fp; C=(g",87)"(g.8") = (8. &™)

Encryption in H similar.
o Add by multiplying ciphertexts; multiply once by pairing ciphertexts.
o Use projecting pairing e (vector of 4 pairings).
@ Decryption in G:
O Compute m(C) = (g7™H7)* - (g7") "1 = (g %)™
@ Take discrete log base m1(g) = g% (requires small message space).

Decryption in H similar; decryption in G; = G} more complicated.

DDH in G1, G, = subgp decision in (G, G1, H, H1, €) = semantic security.
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The conversion process Conclusion

Other systems

We also applied our conversion process to BSW traitor tracing and KSW
attribute-based encryption.

@ Groups become smaller and pairing computations become much faster.
@ Security assumptions remain of comparable complexity.

o Efficiency improvement is greater at higher security levels:
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Other systems

We also applied our conversion process to BSW traitor tracing and KSW

attribute-based encryption.

@ Groups become smaller and pairing computations become much faster.

@ Security assumptions remain of comparable complexity.

o Efficiency improvement is greater at higher security levels:

Bit size of BGN ciphertexts
Security level || composite-order | prime-order
80-bit 1024 1020
128-bit 3072 1536
256-bit 15360 6400
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Other systems

We also applied our conversion process to BSW traitor tracing and KSW

attribute-based encryption.

@ Groups become smaller and pairing computations become much faster.

@ Security assumptions remain of comparable complexity.

o Efficiency improvement is greater at higher security levels:

Bit size of BGN ciphertexts
Security level || composite-order | prime-order
80-bit 1024 1020
128-bit 3072 1536
256-bit 15360 6400

Conclusion: Most things that can be done using composite-order bilinear

groups can be done more efficiently using prime-order bilinear groups.
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