EUROCRYPT 2010

29th Annual International Conference on Cryptology – Monaco (France)

Algebraic Cryptanalysis of McEliece Variants with Compact Keys

Jean-Charles Faugère², Ayoub Otmani^{1,3}, Ludovic Perret², Jean-Pierre Tillich³

¹ GREYC, Université de Caen - Ensicaen
 ² SALSA Project - INRIA (Centre Paris-Rocquencourt) UPMC, Univ Paris 06 - CNRS, UMR 7606, LIP6
 ³ SECRET Project - INRIA (Centre Paris-Rocquencourt)

Introduction

Our contribution

- Key-recovery attacks against McEliece cryptosystem \iff Solving a highly structured polynomial system
- The associated systems for two McEliece variants with **very compact** keys proposed by Berger-Cayrel-Gaborit-Otmani (2009) and Misoczki-Barreto (2009) have **few** variables and **many** linear equations
- This leads to a practical key recovery algebraic attacks against these two schemes

Introduction

Our contribution

- Key-recovery attacks against McEliece cryptosystem \iff Solving a highly structured polynomial system
- The associated systems for two McEliece variants with very compact keys proposed by Berger-Cayrel-Gaborit-Otmani (2009) and Misoczki-Barreto (2009) have few variables and many linear equations
- This leads to a practical key recovery algebraic attacks against these two schemes

▷ An independent work by Gauthier Umana – Leander also proposes an attack practical for some parameters (to appear at SCC 2010)

Definitions

 $\triangleright \mathscr{C}$ is a *linear code* over \mathbb{F}_q of length n and dimension k if \mathscr{C} is k-dimensional vector subspace of \mathbb{F}_q^n

▷ **Decoding** a code *C* consists in solving the **Closest Vector Problem** for the Hamming metric (can be regarded as an analogue of CVP in lattices)

```
Input. \mathscr{C} is a linear code \subset \mathbb{F}_q^n and \boldsymbol{y} in \mathbb{F}_q^n
```

Output. Find in \mathscr{C} the closest vector to y

Algorithmic Issues

- Decoding a random linear code
 - Proved NP-Hard by BERLEKAMP MCELIECE VAN TILBORG in '78
 - Best practical algorithms are based on Information Set Decoding
 - \bullet Probabilistic exhaustive search for a codeword inside a ball of radius t
 - Time complexity is $\simeq 2^{\text{constant } n(1+o(1))}$ (assuming that both t/n and k/n are constant)

Algorithmic Issues

- Decoding a random linear code
 - Proved NP-Hard by BERLEKAMP MCELIECE VAN TILBORG in '78
 - Best practical algorithms are based on Information Set Decoding
 - \bullet Probabilistic exhaustive search for a codeword inside a ball of radius t
 - Time complexity is $\simeq 2^{\text{constant } n(1+o(1))}$ (assuming that both t/n and k/n are constant)

▷ But structured codes can be decoded in polynomial time...

Alternant Codes

$$\triangleright \text{ Consider two fields } \mathbb{F}_q \text{ and } \mathbb{F}_{q^m} \text{ with } q = 2^s \text{ } (s \ge 1) \text{ and } m \ge 1$$

$$\triangleright \boldsymbol{x} = (x_1, \dots, x_n) \in \mathbb{F}_{q^m}^n \text{ with } x_i \ne x_j \text{ if } i \ne j$$

$$\triangleright \boldsymbol{y} = (y_1, \dots, y_n) \in \mathbb{F}_{q^m}^n \text{ with } y_i \ne 0$$

$$\triangleright \text{ For any } t < n, \text{ let } \boldsymbol{H}_t(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text{def}}{=} \begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ y_1 x_1 & y_2 x_2 & \cdots & y_n x_n \\ \vdots & \vdots & \vdots \\ y_1 x_1^{t-1} & y_2 x_2^{t-1} & \cdots & y_n x_n^{t-1} \end{pmatrix}$$

Definition. An *alternant* code $\mathscr{A}_t(\boldsymbol{x}, \boldsymbol{y})$ is the kernel of $\boldsymbol{H}_t(\boldsymbol{x}, \boldsymbol{y})$ in \mathbb{F}_q^n

$$oldsymbol{v} \in \mathscr{C} \quad \Longleftrightarrow \quad oldsymbol{v} \in \mathbb{F}_q^n \; \; ext{and} \; oldsymbol{H}_t(oldsymbol{x},oldsymbol{y}) \, oldsymbol{v}^T = oldsymbol{0}$$

Proposition. Alternant codes can be decoded in **polynomial time** up to t/2 errors as long as x and y are known

McEliece Cryptosystem

- ▷ One of the oldest public-key cryptosystems (R.J. MCELIECE in 1978)
- ▷ Alternative system based on coding theory

▷ Principle is to mask a structured code in such a way that it looks like random

- Trapdoor = $H_t(x, y)$
- Public key = Random basis G of Ker $(oldsymbol{H}_t(oldsymbol{x},oldsymbol{y})) \cap \mathbb{F}_q^n$

Algebraic Cryptanalysis of McEliece PKC

 \triangleright What we have: $G = (g_{i,j})$ is the public matrix

 \triangleright What is known: rows of ${m G}$ belong to the kernel of ${m H}_t({m x},{m y})$

 \implies The secret vectors $m{x}$ and $m{y}$ have to satisfy $m{H}_t(m{X},m{Y})\,m{G}^T=m{0}$

$$\begin{pmatrix} Y_1 & Y_2 & \cdots & Y_n \\ Y_1 X_1 & Y_2 X_2 & \cdots & Y_n X_n \\ \vdots & \vdots & & \vdots \\ Y_1 X_1^{t-1} & Y_2 X_2^{t-1} & \cdots & Y_n X_n^{t-1} \end{pmatrix} \boldsymbol{G}^T = \boldsymbol{0}$$

Algebraic Cryptanalysis of McEliece PKC

Definition. The McEliece algebraic system is the set of equations defined by

$$\mathsf{McE}_{n,k,t}(\boldsymbol{X},\boldsymbol{Y}) \stackrel{\mathsf{def}}{=} \begin{cases} g_{1,0}Y_0 + \dots + g_{1,n-1}Y_{n-1} = 0 \\ \vdots \\ g_{k,0}Y_0 + \dots + g_{k,n-1}Y_{n-1} = 0 \\ \vdots \\ g_{i,0}Y_0X_0^j + \dots + g_{i,n-1}Y_{n-1}X_{n-1}^j = 0 \text{ with } \begin{cases} i \in \{0,\dots,k-1\} \\ j \in \{0,\dots,t-1\} \\ \vdots \end{cases} \end{cases}$$

where the $g_{i,j}$'s are known coefficients in \mathbb{F}_q and k is an integer $\geq n - t m$.

Algebraic Cryptanalysis of McEliece PKC

Definition. The McEliece algebraic system is the set of equations defined by

$$\mathsf{McE}_{n,k,t}(\boldsymbol{X},\boldsymbol{Y}) \stackrel{\mathsf{def}}{=} \begin{cases} g_{1,0}Y_0 + \dots + g_{1,n-1}Y_{n-1} = 0 \\ \vdots \\ g_{k,0}Y_0 + \dots + g_{k,n-1}Y_{n-1} = 0 \\ \vdots \\ g_{i,0}Y_0X_0^j + \dots + g_{i,n-1}Y_{n-1}X_{n-1}^j = 0 \text{ with } \begin{cases} i \in \{0,\dots,k-1\} \\ j \in \{0,\dots,t-1\} \\ \vdots \end{cases} \end{cases}$$

where the $g_{i,j}$'s are known coefficients in \mathbb{F}_q and k is an integer $\geq n - t m$.

Example. McEliece proposed in 1978 q = 2, m = 10, n = 1024, $t = 50 \Rightarrow k \ge 524$ \Rightarrow Public key has 250Kbits (60-bit security)

Variants with Compact Keys

▷ McEliece cryptosystem suffers from the key-size problem

Several attempts have been made to solve this problem by taking structured compact matrices

• Quasi-cyclic. Gaborit 2005 (insecure), Baldi-Chiaraluce 2007 (insecure) Baldi-Chiaraluce 2008, Berger-Cayrel-Gaborit-Otmani (BCGO) 2009

• Quasi-dyadic. Misoczki-Barreto (MB) 2009

BCGO Proposal

Definition. Assume that $n = \ell n_0$ and let β be a **public** element of \mathbb{F}_{q^m} of order ℓ .

▷ Secret key.

- (x_0, \ldots, x_{n_0-1}) with $x_i \in \mathbb{F}_{q^m}$ and $x_i \neq x_j$ if $i \neq j$
- (y_0, \ldots, y_{n_0-1}) with $y_i \neq 0$ $(y_i \in \mathbb{F}_{q^m})$
- $e \in \{0, \ldots, \ell 1\}$

ho Public key. A basis G of Ker $(H_t(x, y)) \cap \mathbb{F}_q^n$ with

$$\boldsymbol{x} = (\overbrace{x_0, \beta x_0 \dots, \beta^{\ell-1} x_0, \dots, x_{n_0-1}, \beta x_{n_0-1}, \dots, \beta^{\ell-1} x_{n_0-1}}^{\ell})$$

$$\boldsymbol{y} = (\overbrace{y_0, \beta^e y_0, \dots, \beta^{e(\ell-1)} y_0, \dots, y_{n_0-1}, \beta^e y_{n_0-1}, \dots, \beta^{e(\ell-1)} y_{n_0-1}}^{\ell})$$

BCGO Proposal

More formally, we obtain the following linear relations for any $i \in \{0, ..., n_0 - 1\}$ and $j \in \{0, ..., \ell - 1\}$:

$$x_{i\ell+j} = \beta^j x_{i\ell}$$
$$y_{i\ell+j} = \beta^{ej} y_{i\ell}$$

Corollary. The system is completely described by n_0 variables Y_i and n_0 variables X_i assuming that e is **known** ($0 \le e \le 100$)

MB Proposal

Proposition. The public code is an alternant over \mathbb{F}_q with $q = 2^s$ $(s \ge 1)$ where for any $0 \le j \le n_0 - 1$ and $0 \le i, i' \le \ell - 1$, we have:

$$\begin{cases} y_{j\ell+i} = y_{j\ell} \\ x_{j\ell+i} + x_{j\ell} = x_i + x_0 \\ x_{j\ell+(i\oplus i')} = x_{j\ell+i} + x_{j\ell+i'} + x_{j\ell} \end{cases}$$

Corollary.

 \triangleright For any $1 \le i \le \ell - 1$, if we write the binary decomposition of $i = \sum_{j=0}^{\log_2(\ell-1)} \eta_j 2^j$ then:

$$x_i = x_0 + \sum_{j=0}^{\log_2(\ell-1)} \eta_j(x_{2^j} + x_0).$$

 \triangleright Hence, the system is described by n_0 variables Y_i and $n_0 + \log_2(\ell)$ variables X_i

Reducing the Number of Variables

Proposition. Some variables can be **fixed** so that the number of unknowns can be reduced to n_Y (*resp.* n_X) unknowns Y_i (*resp.* X_i) where

 $\triangleright \mathsf{McE}_{n,k,t}(X,Y)$. $n_Y = n-1$ and $n_X = n-3$ (one Y_i and three X_i 's)

 \triangleright BCGO variant. $n_Y = n_0 - 1$ and $n_X = n_0 - 1$ (one Y_i and one X_i)

 \triangleright MB variant. $n_Y = n_0 - 1$ and $n_X = n_0 - 2 + \log_2(\ell)$ (one Y_i and two X_i 's)

Solving the Algebraic System

1. Naive approach by applying directly a generic Gröbner basis algorithm (Magma)

▷ It fails for almost all challenges

 \triangleright But, one challenge A_{20} (AfricaCrypt '09) was broken in 24 hours of computation using a non negligible amount of memory

Solving the Algebraic System

1. Naive approach by applying directly a generic Gröbner basis algorithm (Magma)

 \triangleright It fails for almost all challenges

 \triangleright But, one challenge A_{20} (AfricaCrypt '09) was broken in 24 hours of computation using a non negligible amount of memory

- 2. A natural approach that exploits the particular structure of the system:
 - Linear equations involving only the variables Y_i
 - Many quadratic equations (in \mathbb{F}_q) involving $Y_i X_j^{2^l}$ with very few unknowns

Extracting a Bilinear Subsystem

 \triangleright Keeping only the exponents of X_i that are powers of 2:

 \triangleright Reducing the number of variables by removing all the linear equations involving the Y_j 's

 \Rightarrow Let d be the **remaining** degree of freedom of the Y_i 's

Solving $biMcE_{n,k,t}(\mathbf{X}, \mathbf{Y})$ – Naive Approach

 \triangleright If d is very small then perform an exhaustive search in \mathbb{F}_{q^m}

 \triangleright Solve the remaining linear system with the X_i 's

 \triangleright Time complexity $O\left(q^{md}(mn_X)^3\right)$

Example.

Challenge A_{20} (BCGO variant): $q = 2^{10}, m = 2, d = 3 \longrightarrow 2^{60}$

Solving $biMcE_{n,k,t}(\boldsymbol{X},\boldsymbol{Y})$ – Naive Approach

 \triangleright If d is very small then perform an exhaustive search in \mathbb{F}_{q^m}

 \triangleright Solve the remaining linear system with the X_i 's

 \triangleright Time complexity $O\left(q^{md}(mn_X)^3\right)$

Example.

Challenge A_{20} (BCGO variant): $q = 2^{10}, m = 2, d = 3 \longrightarrow \ge 2^{60} \longrightarrow 2^{15.8}$

Complexity of Gröbner Basis

Proposition. The time complexity of the F_5 algorithm grevlex Gröbner basis for a system of N variables is

$$O\left(N^{3\mathsf{d}_{\mathsf{reg}}}\right)$$

where d_{reg} is the degree of regularity

Complexity of Gröbner Basis

Proposition. The time complexity of the F_5 algorithm grevlex Gröbner basis for a system of N variables is

$$O\left(N^{3\mathsf{d}_{\mathsf{reg}}}\right)$$

where d_{reg} is the degree of regularity

Proposition. ([FSS, Theorem 6.1]) For the grevlex ordering, the degree of regularity of a generic affine bilinear 0-dimensional system over $\mathbb{K}[X, Y]$ is upper bounded by

 $\mathsf{d}_{\mathsf{reg}} \leqslant \min\left(n_Y, n_X\right) + 1$

J.-C. Faugère, M. Safey El Din, and P.-J. Spaenlehauer. Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1,1): Algorithms and complexity. *arXiv:1001.4004v1 [cs.SC]*, 2010.

Complexity of Gröbner Basis

Recall that our system has a particular structure

 \triangleright The only monomials occurring are $Y_i X_j^l$

 \triangleright Each block of k equations is **bi-homogeneous** *i.e.* the degrees of the variables of X (resp. Y) are the same

Corollary. In all the considered cases,

$$\triangleright d_{reg} = d + 1$$
 and hence the time complexity is roughly $O\left(n_X^{3(d+1)}\right)$

 \triangleright In particular the attack is polynomial when d is a **constant**

Experimental Results

 \triangleright We used a **dedicated** F₅ algorithm that has been implemented in C language in the FGb software for computing the first Gröbner basis

 \triangleright Experimental results have been obtained with several Xeon bi-processor 3.2 Ghz with 16 GBytes of RAM

 \triangleright Instances have been generated using the Magma software (version 2.15)

> In practice the most difficult task is to generate the algebraic equations

Practical results – BCGO Variant

Challenge	q	l	n_0	d	Security	Variables	Equations	Time (Operations, Memory)
A_{16}	2^8	51	9	3	80	16	510	$0.06 \sec \left(2^{18.9} \operatorname{op}, 115 \operatorname{Meg} \right)$
B_{16}	2^8	51	10	3	90	18	612	$0.03 \mathrm{sec} (2^{17.1} \mathrm{op}, 116 \mathrm{Meg})$
C_{16}	2^8	51	12	3	100	22	816	$0.05 \mathrm{sec} \; (2^{16.2} \; \mathrm{op}, 116 \; \mathrm{Meg})$
D_{16}	2^8	51	15	4	120	28	1275	$0.02 \sec \left(2^{14.7} \operatorname{op}, 113 \operatorname{Meg} \right)$
A_{20}	2^{10}	75	6	2	80	10	337	$0.05 \text{ sec } (2^{15.8} \text{ op, } 115 \text{ Meg})$
B_{20}	2^{10}	93	6	2	90	10	418	$0.05 \sec \left(2^{17.1} \operatorname{op}, 115 \operatorname{Meg} ight)$
C_{20}	2^{10}	93	8	2	110	14	697	$0.02~{ m sec}~(2^{14.5}~{ m op},~115~{ m Meg})$
QC ₆₀₀	2^8	255	15	3	600	28	6820	$0.08~{ m sec}~(2^{16.6}~{ m op},~116~{ m Meg})$

Remark.

- \triangleright The solutions always belong to \mathbb{F}_{q^m} with m = 2 (BCGO constraint)
- \triangleright We also proposed the parameter QC₆₀₀ to show the influence of d

Practical Results – MB Variant

Challenge	q	d	l	n_0	Security	Variables	Time (Operations, Memory)
Table 2	2^2	7	64	56	128	115	1,776.3 sec ($2^{34.2}$ op, 360 Meg)
Table 2	2^4	3	64	32	128	67	$0.50~{ m sec}~(2^{22.1}~{ m op},~118~{ m Meg})$
Table 2	2^{8}	1	64	12	128	27	$0.03~{ m sec}~(2^{16.7}~{ m op},~35~{ m Meg})$
Table 3	2^{8}	1	64	10	102	23	$0.03~{ m sec}~(2^{15.9}~{ m op},~113~{ m Meg})$
Table 3	2^{8}	1	128	6	136	16	$0.02~{ m sec}~(2^{15.4}~{ m op},~113~{ m Meg})$
Table 3	2^{8}	1	256	4	168	13	$0.11~{ m sec}~(2^{19.2}~{ m op},~113~{ m Meg})$
Table 5	2^{8}	1	128	4	80	12	$0.06 \sec \left(2^{17.7} \operatorname{op}, 35 \operatorname{Meg} ight)$
Table 5	2^{8}	1	128	5	112	14	$0.02~{\sf sec}~(2^{14.5}~{\sf op},~35~{\sf Meg})$
Table 5	2^{8}	1	128	6	128	16	$0.01~{\sf sec}~(2^{16.6}~{\sf op},~35~{\sf Meg})$
Table 5	2^8	1	256	5	192	15	$0.05~{\sf sec}~(2^{17.5}~{\sf op},~35~{\sf Meg})$
Table 5	2^{8}	1	256	6	256	17	$0.06~{ m sec}~(2^{17.8}~{ m op},~35~{ m Meg})$
Dya_{256}	2^4	3	128	32	256	68	$7.1~{ m sec}~(2^{26.1}~{ m op},~131~{ m Meg})$
Dya_{512}	2^{8}	1	512	6	512	18	$0.15~{\sf sec}~(2^{19.7}~{\sf op},~{\sf 38}~{\sf Meg})$

Remark. Binary challenges are not solved (work in progress)

Conclusions

▷ MCELIECE scheme is a **challenging** public key cryptosystem

- Little is known about key recovery attacks
- We introduced an algebraic framework for tackling this issue
- We focused on a bilinear subsystem

> This approach gave successful results for variants with compact keys

- The proposed parameters were **too optimistic** (key should be larger)
- An **unbalanced number** of variables does not improve the security

▷ A variation of this approach gives a way of **distinguishing** a public key from a random matrix for some types of McEliece keys

Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Jean-Pierre Tillich, A Distinguisher for High Rate McEliece Cryptosystems, *preprint*.

Open Questions

▷ Sharpen the complexity bounds by taking into account the over-determination of the system

 \triangleright Improve the solving for larger values of d

▷ How far this attack can be pushed to recover the private key of a McEliece cryptosystem?