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This is a story of...

Something which would have taken 1.3 billion years...

...can now be done in 61 days

...at home!
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1 Introduction

2 SVP, Enumeration and Pruning

3 Sketch of the analysis
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Analogy

Treasure Hunt

There are 10101 doors, a Treasure is hidden according to the distribution

25%: behind door number 1

65%: behind a uniformly chosen door between 2 and 101

10%: behind a uniformly chosen door between 102 and 10101

Strategies

Full enumeration: open all the doors
Time required 10101, always succeeds

Pruned enumeration: just go over first 101 doors.
Time required: 101; success probability 90%

Extreme pruning: just try the first door. If not there, restart game.
Expect time to find treasure: 4
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The problems

SVP: Given a lattice basis B , find
the shortest non-zero vector of L(B)

0

CVP: Given a lattice basis B and a
target vector ~v ∈ Rm , find the lattice
vector of L(B) closest to ~v

0

v
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Background on exact algorithms for SVP/CVP

SVP

low storage
mem: Poly
time: 2Θ(n2)

large storage
mem: 2Θ(n)

time: 2Θ(n)

Enumeration

Voronoi

Sieving

[ScEu94]
[ScHo95]

[Ka83]

[MiVo10]

[AKS01]

CVP

or 2Θ(n log n)

Widely used
Subroutine for solving
lattice challenges

Impractical in high
dimension
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Our results
Exponential speed-up against enumeration

Pruning (2Θ(n2) time, negligible memory)

1 First sound analysis of pruned enumeration

2 Prove that asymptotically pruning gives exponential speedup of 2n/4

3 Main contribution: Extreme pruning
Further speed-up ≈ 2n/4 vs. Basic Pruning
Leading to an overall ≈ 2n/2 vs. Full enumeration
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Experimental results

Find the shortest vector of a dense 110-dimensional lattice

Full enumeration: 1.3 billion years (estimated)

Basic pruning: 320 years (estimated)

Extreme pruning: 61 days
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Enumerating vectors

0

Definitions

Lattice

Basis

Dimension

Volume (Volume(L))

Shortest vector (λ1(L))
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Enumerate all points of a given 3D lattice of norm ≤
√

12

B =

1 1 2
1 2 2
2 2 2


Solution

Find all ~v = u1
~b1 + u2

~b2 + u3
~b3:

(u1, u2, u3) ∈ Z3

‖~v‖ ≤
√

12

For each “possible”u3

make a recursive call

0

~b1

~b2
~b3

2~b3 + x~b1 + y~b2
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The quality of the input basis

B =

1 1 2
1 2 2
2 2 2

 or C =

144 172 184
100 120 128
36 44 48

?

Basis reduction

The running time depends on the quality of the input basis
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Enumerating in a cylinder intersection

Pruning

Pruned enumeration puts a
different norm bound for each
level of the recursion

This effectively replaces
searching in a ball with
searching in a
cylinder intersection

x2
1 ≤ α1

x2
1 + x2

2 ≤ α2

x2
1 + x2

2 + x2
3 ≤ α3
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The algorithm may miss the shortest vector

Caveat

We do not explore all the possibilities any more

On some bases, it may miss the shortest vector

Hence success probability is lower than 1
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Basis randomization

Dealing with the success probability

We search the shortest vector of the lattice.

A lattice contains a lot of “reduced” bases

Their directions are well distributed

Pruning will succeed on some of them

Algorithm

Repeat the following:

1 Generate a reduced basis

2 Do pruned enumeration
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The bounding function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100 110

Linear
Numerically Optimized

Nicolas Gama, Phong Nguyen, Oded Regev ()Lattice Enumeration using Extreme Pruning June, 2010 15 / 28



Experimental evidence

Experimental result

61 sequential CPU-Days to solve a 110-dim CJLOSS problem

≈500 independent runs of ≈3h

(45 min reduction time included)
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Analysis

1 All the above running-times are predictable

2 The best bounding function can be numerically obtained
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Triangular isometric representation

b∗
3

b2 b∗
2

b1 = b∗
1

b3

Bases are viewed up to an isometry

(Gram Schmidt)

B =

∥∥∥~b∗1∥∥∥ 0 · · · 0

?
∥∥∥~b∗2∥∥∥ . . .

...

? ?
. . . 0

? ? ?
∥∥∥~b∗n∥∥∥

 ·Q
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Projected lattices/Partial norms
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Complexity analysis - Full enumeration

Complexity of depth k :

Nk = number of lattice points of πk (L) in Ball(target,R)

Nk = Volume(Ballk (·,R)) ∩ πk (L)

Total running time:
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Pruned running time

Running time =
treduction + tnode

∑n
k=1

Volume(α1,...,αk )
Volume(πk (L))

Probasuccess
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Volume of a cylinder intersection

‖π1(~x )‖2 ≤ α1

‖π2(~x )‖2 ≤ α2

‖π3(~x )‖2 ≤ α3

. . .
‖πk (~x )‖2 ≤ αk
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Volume of a cylinder intersection

Closed formula

Vα1,...,αk = 2n ·
ˆ √α1

x1=0

ˆ √α2−x2
1

x2=0

ˆ √α3−x2
1−x2

2

x3=0

. . .

ˆ q
αn−x2

1−···−x2
n−1

xn=0

dx1dx2 . . . dxn

Particular case

Computing this volume exactly in general seems hard

Luckily, for bounding functions of the form:

(α1, α1, α3, α3, . . . , αn−1, αn−1),

we can compute it exactly using the Dirichlet distribution.

These exact computations already lead to very good upper and lower
bounds
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Success probability

What we want:

the surface of Cylinder(α1, . . . , αn) ∩ Sphere(αn)

Remark

We can still compute it precisely and quickly for

(α1, α1, α3, α3, . . . , αn−1, αn−1).
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Best bounding function

Optimizing the bounding function

1 start from the linear bounding function

2 apply perturbations, keep the best

It converges!

It converges

The limit seems to be a global optimum

Whatever starting point we use!
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Best bounding function
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Best bounding function
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Summary

Extreme Pruning (2Θ(n2) time, negligible memory)

Exponential speed-up:
≈ 2n/2 vs. Full enumeration
≈ 2n/4 vs. all kind of high-probability pruning

Sound geometric analysis

Tight running-time predictions (within 1%)

Massively parallel
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Open questions

Main open questions

Apply these ideas to improve lattice reduction algorithms? (in
progress)

Are there time-memory trade-offs?

I.e., use more memory to improve running time

Other open questions

Design SIMD versions?

Prove that the numerically optimized bounding function is the best
one
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