Lattice Enumeration using Extreme Pruning

Nicolas Gama, Phong Nguyen, Oded Regev

June, 2010

Nicolas Gama, Phong Nguyen, Oded Regev (Lattice Enumeration using Extreme Pruning

June, 2010 1 / 28

Something which would have taken 1.3 billion years...

...can now be done in 61 days

...at home!

- Introduction
- SVP, Enumeration and Pruning
- Sketch of the analysis

Analogy

Treasure Hunt

There are 10101 doors, a Treasure is hidden according to the distribution

- 25%: behind door number 1
- 65%: behind a uniformly chosen door between 2 and 101
- 10%: behind a uniformly chosen door between 102 and 10101

Strategies

Full enumeration: open all the doors Time required 10101, always succeeds

Analogy

Treasure Hunt

There are 10101 doors, a Treasure is hidden according to the distribution

- 25%: behind door number 1
- 65%: behind a uniformly chosen door between 2 and 101
- 10%: behind a uniformly chosen door between 102 and 10101

Strategies

Full enumeration: open all the doors Time required 10101, always succeeds Pruned enumeration: just go over first 101 doors. Time required: 101; success probability 90%

Analogy

Treasure Hunt

There are 10101 doors, a Treasure is hidden according to the distribution

- 25%: behind door number 1
- 65%: behind a uniformly chosen door between 2 and 101
- 10%: behind a uniformly chosen door between 102 and 10101

Strategies

Full enumeration: open all the doors

Time required 10101, always succeeds

Pruned enumeration: just go over first 101 doors.

Time required: 101; success probability 90%

Extreme pruning: just try the first door. If not there, restart game.

Expect time to find treasure: 4

< □ > < A >

The problems

SVP: Given a lattice basis B, find the shortest non-zero vector of L(B)0 CVP: Given a lattice basis B and a target vector $\vec{v} \in \mathbb{R}^m$, find the lattice vector of L(B) closest to \vec{v}

The problems

SVP: Given a lattice basis B, find the shortest non-zero vector of L(B) CVP: Given a lattice basis B and a target vector $\vec{v} \in \mathbb{R}^m$, find the lattice vector of L(B) closest to \vec{v}

Background on exact algorithms for SVP/CVP

Pruning $(2^{\Theta(n^2)}$ time, negligible memory)

- First sound analysis of pruned enumeration
- 2 Prove that asymptotically pruning gives exponential speedup of $2^{n/4}$
- Main contribution: Extreme pruning Further speed-up $\approx 2^{n/4}$ vs. Basic Pruning Leading to an overall $\approx 2^{n/2}$ vs. Full enumeration

Find the shortest vector of a dense 110-dimensional lattice

Full enumeration: 1.3 billion years (estimated)

Basic pruning: 320 years (estimated)

Extreme pruning: 61 days

Enumerating vectors

Definitions

- Lattice
- Basis
- Dimension
- Volume (Volume(L))
- Shortest vector $(\lambda_1(L))$

Enumerate all points of a given 3D lattice of norm $\leq \sqrt{12}$

$$B = \begin{pmatrix} 1 & 1 & 2\\ \hline 1 & 2 & 2\\ \hline 2 & 2 & 2 \end{pmatrix}$$

Solution

- Find all $\vec{v} = u_1 \vec{b}_1 + u_2 \vec{b}_2 + u_3 \vec{b}_3$:
 - $(u_1, u_2, u_3) \in \mathbb{Z}^3$ • $\|\vec{v}\| \le \sqrt{12}$
- For each "possible" u₃
 - make a recursive call

$$B = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ \hline 2 & 2 & 2 \end{pmatrix} \text{ or } C = \begin{pmatrix} 144 & 172 & 184 \\ \hline 100 & 120 & 128 \\ \hline 36 & 44 & 48 \end{pmatrix}?$$

Basis reduction

The running time depends on the quality of the input basis

Nicolas Gama, Phong Nguyen, Oded Regev (Lattice Enumeration using Extreme Pruning

Enumerating in a cylinder intersection

Pruning

- Pruned enumeration puts a different norm bound for each level of the recursion
- This effectively replaces searching in a ball with searching in a *cylinder intersection*

•
$$x_1^2 \le \alpha_1$$

• $x_1^2 + x_2^2 \le \alpha_2$
• $x_1^2 + x_2^2 + x_3^2 \le \alpha_2$

3

Caveat

- We do not explore all the possibilities any more
- On some bases, it may miss the shortest vector
- Hence success probability is lower than 1

Dealing with the success probability

- We search the shortest vector of the lattice.
- A lattice contains a lot of "reduced" bases
- Their directions are well distributed
 - Pruning will succeed on some of them

Algorithm

Repeat the following:

- Generate a reduced basis
- O pruned enumeration

The bounding function

June, 2010 15 / 28

Experimental result

- 61 sequential CPU-Days to solve a 110-dim CJLOSS problem
- \approx 500 independent runs of \approx 3h
 - (45 min reduction time included)

- Il the above running-times are predictable
- In the best bounding function can be numerically obtained

Triangular isometric representation

Bases are viewed up to an isometry • (Gram Schmidt) $B = \begin{bmatrix} \left\| \vec{b}_1^* \right\| & 0 & \cdots & 0 \\ ? & \left\| \vec{b}_2^* \right\| & \ddots & \vdots \\ ? & ? & \ddots & 0 \\ ? & ? & ? & \left\| \vec{b}_n^* \right\| \end{bmatrix} \cdot Q$

June, 2010 18 / 28

Projected lattices/Partial norms

Nicolas Gama, Phong Nguyen, Oded Regev (Lattice Enumeration using Extreme Pruning

Complexity of depth k:

N_k = number of lattice points of $\pi_k(L)$ in Ball(target, R)

 $N_k = \text{Volume}(\text{Ball}_k(\cdot, R)) \cap \pi_k(L)$

Complexity of depth k:

 N_k = number of lattice points of $\pi_k(L)$ in Ball(target, R)

$$N_k = \frac{\text{Volume}(\text{Ball}_k(\cdot, R))}{\text{Volume}(\pi_k(L))}$$

(Gaussian Heuristic)

Complexity of depth k:

 N_k = number of lattice points of $\pi_k(L)$ in Ball(target, R)

$$N_k = rac{\text{Volume}(\text{Ball}_k(\cdot, R))}{\text{Volume}(\pi_k(L))}$$

(Gaussian Heuristic)

Total running time:

running time =
$$t_{\text{reduction}} + t_{\text{node}} \cdot \sum_{k=1}^{n} N_k$$

Nicolas Gama, Phong Nguyen, Oded Regev (Lattice Enumeration using Extreme Pruning

June, 2010 21 / 28

Volume of a cylinder intersection

$$\begin{aligned} \|\pi_{1}(\vec{x})\|^{2} &\leq \alpha_{1} \\ \|\pi_{2}(\vec{x})\|^{2} &\leq \alpha_{2} \\ \|\pi_{3}(\vec{x})\|^{2} &\leq \alpha_{3} \\ & \cdots \\ \|\pi_{k}(\vec{x})\|^{2} &\leq \alpha_{k} \end{aligned}$$

June, 2010 22 / 28

Volume of a cylinder intersection

Closed formula

$$V_{\alpha_1,\dots,\alpha_k} = 2^n \cdot \int_{x_1=0}^{\sqrt{\alpha_1}} \int_{x_2=0}^{\sqrt{\alpha_2-x_1^2}} \int_{x_3=0}^{\sqrt{\alpha_3-x_1^2-x_2^2}} \dots \int_{x_n=0}^{\sqrt{\alpha_n-x_1^2-\dots-x_{n-1}^2}} dx_1 dx_2 \dots dx_n$$

Particular case

- Computing this volume exactly in general seems hard
- Luckily, for bounding functions of the form:

$$(\alpha_1, \alpha_1, \alpha_3, \alpha_3, \ldots, \alpha_{n-1}, \alpha_{n-1}),$$

we can compute it exactly using the Dirichlet distribution.

 These exact computations already lead to very good upper and lower bounds

What we want:

• the surface of $\operatorname{Cylinder}(\alpha_1, \ldots, \alpha_n) \cap \operatorname{Sphere}(\alpha_n)$

Remark

• We can still compute it precisely and quickly for

 $(\alpha_1, \alpha_1, \alpha_3, \alpha_3, \ldots, \alpha_{n-1}, \alpha_{n-1}).$

Optimizing the bounding function

- start from the linear bounding function
- apply perturbations, keep the best

Optimizing the bounding function

- start from the linear bounding function
- apply perturbations, keep the best

It converges!

- It converges
- The limit seems to be a global optimum
 - Whatever starting point we use!

Best bounding function

June, 2010 26 / 28

Best bounding function

June, 2010 26 / 28

Extreme Pruning $(2^{\Theta(n^2)}$ time, negligible memory)

- Exponential speed-up:
 - $pprox 2^{n/2}$ vs. Full enumeration
 - $\approx 2^{n/4}$ vs. all kind of high-probability pruning
- Sound geometric analysis
- Tight running-time predictions (within 1%)
- Massively parallel

Main open questions

- Apply these ideas to improve lattice reduction algorithms? (in progress)
- Are there time-memory trade-offs?
 - I.e., use more memory to improve running time

Other open questions

- Design SIMD versions?
- Prove that the numerically optimized bounding function is the best one