
New generic algorithms for hard knapsacks

Nick Howgrave-Graham1 Antoine Joux2

35 Park St, Arlington, MA 02474
nickhg@gmail.com

DGA and Université de Versailles Saint-Quentin-en-Yvelines
antoine.joux@m4x.org

Eurocrypt 2010, Nice and Monaco, June 1st, 2010

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Knapsack problems

I Given positive integers S and a1, . . . , an, consider
equation:

S =
n∑

i=1

εiai ,

I Decision knapsack problem:

Does there exist a {0,1} solution?

I Computational knapsack problem: Find it!

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Hardness

I Hard in general:
I The decision knapsack problem is NP-complete
I The computational knapsack problem is NP-hard

I Easy for a large class:
I Low density knapsacks
I Definition of the density:

d =
n

log2 maxi ai

I Solved by lattice reduction oracles when d < 0.94

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Elementary algorithms for generic knapsacks

I Exhaustive search: Time O(2n) operations

I Birthday algorithm based on:

n/2∑
i=1

εiai = S −
n∑

i=n/2+1

εiai .

Time O(2n/2), memory O(2n/2).

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

State of the art: Schroeppel-Shamir algorithm

I To use birthday algorithm, it suffices to enumerate the set

S(1) =

n/2∑
i=1

εiai

in increasing order.

I Can be done with less memory
I Yields state of the art for generic knapsacks:

Time O(2n/2), memory O(2n/4).

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Description of Schroeppel-Shamir algorithm

I Define the following sets (of size 2n/4):

S(1)
L =

n/4∑
i=1

εiai

S(1)

R =

n/2∑

i=n/2+1

εiai

I Any σ ∈ S(1) can be written σ = σL + σR

I Moreover:

σL + σR < σL + σ′R iff σR < σ′R

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Schroeppel-Shamir continued

I If S(1)
R is sorted:

I Finding successor of σL + σR with same σL is easy
I How to interlace different σL values?

I Schamir and Schroeppel idea:
I Create set of triples (σL + σ

(0)
R , σL, σ

(0)
R)

I Repeat:
I Extract triple with minimum σL + σR from the set
I Update into successor (σL + σ′

R , σL, σ
′
R)

I Require priority queue (heap or balanced tree)

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

A modular variant of Schroeppel-Shamir

I Let M be a prime near 2n/4

I For a knapsack solution σ(1)
L , σ(1)

R , σ(2)
L and σ(2)

R , we have:

σ
(1)
L + σ

(1)
R ≡ S − σ(2)

L − σ(2)
R (mod M).

I Let σM denotes this “middle value”
I Algorithm becomes:

I For each possible value of σM :
I For each σ(1)

L , find all σ(1)
R such that:

σ
(1)
L + σ

(1)
R ≡ σM (mod M).

I For each σ(2)
L , find all σ(2)

R such that:

σ
(2)
L + σ

(2)
R ≡ S − σM (mod M).

I Match the above two lists for exact solution (not only mod M)

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Schroeppel-Shamir for unbalanced knapsacks

I Knapsack with extra information:

n∑
i=1

εi = αn

I Build sets of αn/4 elements in each quarter
I Need “good decomposition”⇒ extra polynomial factor
I Time and memory:(

n/2
αn/2

)
≈

(
1

αα · (1− α)1−α

)n/2

(
n/4
αn/4

)
≈

(
1

αα · (1− α)1−α

)n/4

.

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Schroeppel-Shamir can be improved

I For simplicity, assume exactly n/2 elements ai appear in S
I Consider decompositions:

S = σ1 + σ2 + σ3 + σ4,

where each σj is a sum of exactly n/8 values (among n).
I A given solution of the knapsack can be split into:(

n/2
n/8 n/8 n/8 n/8

)
=

(n/2)!

(n/8)!4
≈ 2n

decompositions σ1 + σ2 + σ3 + σ4.

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Schroeppel-Shamir can be improved (2)

I Fix modulus M, random values R1, R2 and R3

I Search only decompositions with:

σ1 ≡ R1 (mod M) σ2 ≡ R2 (mod M)
σ3 ≡ R3 (mod M) σ4 ≡ S − R1 − R2 − R3 (mod M)

I Since first 3 conditions imply the fourth:
I Expect one decomposition on average when M ≈ 2n/3.

Warning: yields a randomized algorithm !

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

First algorithm
I Given M, R1, R2 and R3

I Solve four unbalanced knapsacks with α = 1/8 on
n elements modulo M

I Expect:(
n
αn

)
·M−1 ≈

(
1

αα · (1− α)1−α

)n

·M−1 ≈ 20.210 n

solutions for each.
I Costs time ≈ 20.272 n (and memory ≈ 20.136 n)

I Use Shamir-Schroeppel again to paste the four sets of
solutions together:

I Costs time ≈ 20.420 n and memory ≈ 20.210 n

Can be improved using smaller value of M (see paper)

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Going further

I Instead of cutting in four, cut in two
I Choose M, R (mod M) and write S = σ1 + σ2

I With σ1 ≡ R and σ2 ≡ S − R (mod M)

I Solve two unbalanced knapsacks with α = 1/4 on
n elements modulo M

I Assume that subknapsacks can be solved efficiently.

I Yields
(n/2

n/4

)
≈ 2n/2 decompositions

I Would yield complexity:

2−n/2
(

n
n/4

)
≈ 20.311 n.

Does assumption holds ?

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Going further

I Instead of cutting in four, cut in two
I Choose M, R (mod M) and write S = σ1 + σ2

I With σ1 ≡ R and σ2 ≡ S − R (mod M)

I Solve two unbalanced knapsacks with α = 1/4 on
n elements modulo M

I Assume that subknapsacks can be solved efficiently.
I Yields

(n/2
n/4

)
≈ 2n/2 decompositions

I Would yield complexity:

2−n/2
(

n
n/4

)
≈ 20.311 n.

Does assumption holds ?

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Going further

I Instead of cutting in four, cut in two
I Choose M, R (mod M) and write S = σ1 + σ2

I With σ1 ≡ R and σ2 ≡ S − R (mod M)

I Solve two unbalanced knapsacks with α = 1/4 on
n elements modulo M

I Assume that subknapsacks can be solved efficiently.
I Yields

(n/2
n/4

)
≈ 2n/2 decompositions

I Would yield complexity:

2−n/2
(

n
n/4

)
≈ 20.311 n.

Does assumption holds ?

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Going further: solving subknapsacks
I Essentially, use idea recursively.

I Problem due to unbalanced knapsacks

(n
α n/2

)(
α n
α n/2

) ≈ 2Cα n.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.2 0.4 0.6 0.8 1

C
α

α

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Going further: solving subknapsacks

I Bad news: Clear problem when α < 1/3
I Good news: Limited depth of recursion

I Switch to Schroeppel-Shamir at some point

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

C
α

α

Schroeppel–Shamir
First algorithm

Theory
Recursive algorithm

Theory

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Proof technique

I Prove that knapsack evaluation mod M are well distributed.
I Basic tool from [Nguyen, Shparlinski, Stern 2001]

I Use exponential sum techniques
I Need M ≤ 2n and M decreasing during recursion

Algorithm proved for overwhelming fraction of
random knapsacks

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Proof technique

I Prove that knapsack evaluation mod M are well distributed.
I Basic tool from [Nguyen, Shparlinski, Stern 2001]

I Use exponential sum techniques
I Need M ≤ 2n and M decreasing during recursion

Algorithm proved for overwhelming fraction of
random knapsacks

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Is it practical ?

I We chose n = 96 and summed 48 elements.
I Schroeppel- Shamir 1:

I Time 1 500 days, Memory 1.8 Gbytes
I Schroeppel- Shamir 2:

I Time 4 400 days, Memory 300 Mbytes
I Our best implementation (heuristic):

I Time 10 hours, Memory 1.7 Gbytes

I For more details:
I See proceedings or IACR eprint 2010/189.

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Is it practical ?

I We chose n = 96 and summed 48 elements.
I Schroeppel- Shamir 1:

I Time 1 500 days, Memory 1.8 Gbytes
I Schroeppel- Shamir 2:

I Time 4 400 days, Memory 300 Mbytes
I Our best implementation (heuristic):

I Time 10 hours, Memory 1.7 Gbytes

I For more details:
I See proceedings or IACR eprint 2010/189.

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Generalizations

I Modular knapsacks (already used in the recursion)
I Noisy knapsacks
I Vectorial knapsacks

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Conclusion

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

