New generic algorithms for hard knapsacks

Nick Howgrave-Graham¹ Antoine Joux²

35 Park St, Arlington, MA 02474 nickhg@gmail.com

DGA and Université de Versailles Saint-Quentin-en-Yvelines antoine.joux@m4x.org

Eurocrypt 2010, Nice and Monaco, June 1st, 2010

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Knapsack problems

Given positive integers S and a₁,..., a_n, consider equation:

$$S = \sum_{i=1}^{n} \epsilon_i a_i,$$

Decision knapsack problem:

Does there exist a $\{0, 1\}$ solution?

Computational knapsack problem: Find it!

通 と く ヨ と く ヨ と

Hardness

- Hard in general:
 - The decision knapsack problem is NP-complete
 - The computational knapsack problem is NP-hard
- Easy for a large class:
 - Low density knapsacks
 - Definition of the density:

$$d = \frac{n}{\log_2 \max_i a_i}$$

▶ Solved by lattice reduction oracles when *d* < 0.94

(* E) * E)

Elementary algorithms for generic knapsacks

• Exhaustive search: Time $O(2^n)$ operations

Birthday algorithm based on:

$$\sum_{i=1}^{n/2} \epsilon_i a_i = S - \sum_{i=n/2+1}^n \epsilon_i a_i.$$

Time $O(2^{n/2})$, memory $O(2^{n/2})$.

通り くほり くほり

State of the art: Schroeppel-Shamir algorithm

To use birthday algorithm, it suffices to enumerate the set

$$\mathcal{S}^{(1)} = \left\{ \sum_{i=1}^{n/2} \epsilon_i \mathbf{a}_i \right\}$$

in increasing order.

- Can be done with less memory
- ➤ Yields state of the art for generic knapsacks: Time O(2^{n/2}), memory O(2^{n/4}).

A E > A E >

Description of Schroeppel-Shamir algorithm

• Define the following sets (of size $2^{n/4}$):

$$S_L^{(1)} = \left\{ \sum_{i=1}^{n/4} \epsilon_i a_i \right\}$$
$$S_R^{(1)} = \left\{ \sum_{i=n/2+1}^{n/2} \epsilon_i a_i \right\}$$

• Any $\sigma \in S^{(1)}$ can be written $\sigma = \sigma_L + \sigma_R$

Moreover:

$$\sigma_L + \sigma_R < \sigma_L + \sigma'_R \quad \text{iff} \quad \sigma_R < \sigma'_R$$

同 ト イヨ ト イヨ ト ヨ うくべ

Schroeppel-Shamir continued

- If $\mathcal{S}_{R}^{(1)}$ is sorted:
 - Finding successor of $\sigma_L + \sigma_R$ with same σ_L is easy
- How to interlace different σ_L values?
- Schamir and Schroeppel idea:
 - Create set of triples $(\sigma_L + \sigma_R^{(0)}, \sigma_L, \sigma_R^{(0)})$
 - Repeat:
 - Extract triple with minimum $\sigma_L + \sigma_R$ from the set
 - Update into successor $(\sigma_L + \sigma'_R, \sigma_L, \sigma'_R)$
 - Require priority queue (heap or balanced tree)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

A modular variant of Schroeppel-Shamir

• Let *M* be a prime near $2^{n/4}$

For a knapsack solution $\sigma_L^{(1)}$, $\sigma_R^{(1)}$, $\sigma_L^{(2)}$ and $\sigma_R^{(2)}$, we have:

$$\sigma_L^{(1)} + \sigma_R^{(1)} \equiv \boldsymbol{S} - \sigma_L^{(2)} - \sigma_R^{(2)} \pmod{M}.$$

- Let \(\sigma_M\) denotes this "middle value"
- Algorithm becomes:
 - For each possible value of σ_M :
 - For each $\sigma_L^{(1)}$, find all $\sigma_R^{(1)}$ such that:

 $\sigma_L^{(1)} + \sigma_R^{(1)} \equiv \sigma_M \pmod{M}.$

• For each $\sigma_L^{(2)}$, find all $\sigma_R^{(2)}$ such that:

$$\sigma_L^{(2)} + \sigma_R^{(2)} \equiv S - \sigma_M \pmod{M}.$$

▲□ → ▲ □ → ▲ □ → ▲ □ → ● ●

Match the above two lists for exact solution (not only mod M)

Schroeppel-Shamir for unbalanced knapsacks

Knapsack with extra information:

$$\sum_{i=1}^{n} \epsilon_i = \alpha \mathbf{n}$$

- Build sets of \(\alpha n/4\) elements in each quarter
- ▶ Need "good decomposition" ⇒ extra polynomial factor
- Time and memory:

$$\begin{pmatrix} n/2 \\ \alpha n/2 \end{pmatrix} \approx \left(\frac{1}{\alpha^{\alpha} \cdot (1-\alpha)^{1-\alpha}} \right)^{n/2} \\ \begin{pmatrix} n/4 \\ \alpha n/4 \end{pmatrix} \approx \left(\frac{1}{\alpha^{\alpha} \cdot (1-\alpha)^{1-\alpha}} \right)^{n/4}$$

Schroeppel-Shamir can be improved

- For simplicity, assume exactly n/2 elements a_i appear in S
- Consider decompositions:

$$S = \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4,$$

where each σ_i is a sum of exactly n/8 values (among n).

A given solution of the knapsack can be split into:

$$\binom{n/2}{n/8 n/8 n/8 n/8} = \frac{(n/2)!}{(n/8)!^4} \approx 2^n$$

decompositions $\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4$.

個人 くほん くほん 一日

Schroeppel-Shamir can be improved (2)

- ▶ Fix modulus *M*, random values *R*₁, *R*₂ and *R*₃
- Search only decompositions with:

$$\begin{array}{lll} \sigma_1 \equiv & R_1 \pmod{M} & \sigma_2 \equiv & R_2 \pmod{M} \\ \sigma_3 \equiv & R_3 \pmod{M} & \sigma_4 \equiv & S - R_1 - R_2 - R_3 \pmod{M} \end{array}$$

- Since first 3 conditions imply the fourth:
 - Expect one decomposition on average when $M \approx 2^{n/3}$.

Warning: yields a randomized algorithm !

First algorithm

- Given M, R_1, R_2 and R_3
- Solve four unbalanced knapsacks with *α* = 1/8 on *n* elements modulo *M*
- Expect:

$$\binom{n}{\alpha n} \cdot M^{-1} \approx \left(\frac{1}{\alpha^{\alpha} \cdot (1-\alpha)^{1-\alpha}}\right)^n \cdot M^{-1} \approx 2^{0.210 n}$$

solutions for each.

- Costs time $\approx 2^{0.272 n}$ (and memory $\approx 2^{0.136 n}$)
- Use Shamir-Schroeppel again to paste the four sets of solutions together:
 - Costs time $\approx 2^{0.420 \, n}$ and memory $\approx 2^{0.210 \, n}$

Can be improved using smaller value of *M* (see paper)

ヨト イヨト ヨー つくへ

Going further

- Instead of cutting in four, cut in two
- Choose *M*, *R* (mod *M*) and write $S = \sigma_1 + \sigma_2$
 - With $\sigma_1 \equiv R$ and $\sigma_2 \equiv S R \pmod{M}$
- Solve two unbalanced knapsacks with \(\alpha\) = 1/4 on \(n\) elements modulo \(M\)
 - Assume that subknapsacks can be solved efficiently.

通り くほり くほり

Going further

- Instead of cutting in four, cut in two
- Choose *M*, *R* (mod *M*) and write $S = \sigma_1 + \sigma_2$
 - With $\sigma_1 \equiv R$ and $\sigma_2 \equiv S R \pmod{M}$
- Solve two unbalanced knapsacks with \(\alpha\) = 1/4 on \(n\) elements modulo \(M\)
 - Assume that subknapsacks can be solved efficiently.
- Yields $\binom{n/2}{n/4} \approx 2^{n/2}$ decompositions
- Would yield complexity:

$$2^{-n/2} \binom{n}{n/4} \approx 2^{0.311 \, n}$$

個 とく ヨ とく ヨ とう

Going further

- Instead of cutting in four, cut in two
- Choose *M*, *R* (mod *M*) and write $S = \sigma_1 + \sigma_2$
 - With $\sigma_1 \equiv R$ and $\sigma_2 \equiv S R \pmod{M}$
- Solve two unbalanced knapsacks with \(\alpha\) = 1/4 on \(n\) elements modulo \(M\)
 - Assume that subknapsacks can be solved efficiently.
- Yields $\binom{n/2}{n/4} \approx 2^{n/2}$ decompositions
- Would yield complexity:

$$2^{-n/2} \binom{n}{n/4} \approx 2^{0.311 \, n}$$

Does assumption holds ?

(雪) (ヨ) (ヨ)

Going further: solving subknapsacks

- Essentially, use idea recursively.
- ▶ Problem due to unbalanced knapsacks $\frac{\binom{n}{\alpha n/2}}{\binom{\alpha n}{\alpha n}} \approx 2^{C_{\alpha} n}$.

Nick Howgrave-Graham, Antoine Joux

New generic algorithms for hard knapsacks

Going further: solving subknapsacks

- ▶ Bad news: Clear problem when $\alpha < 1/3$
- Good news: Limited depth of recursion
 - Switch to Schroeppel-Shamir at some point

ъ

Proof technique

- ▶ Prove that knapsack evaluation mod *M* are well distributed.
- Basic tool from [Nguyen, Shparlinski, Stern 2001]
 - Use exponential sum techniques
- Need $M \le 2^n$ and M decreasing during recursion

個 とく ヨ とく ヨ とう

Proof technique

- ▶ Prove that knapsack evaluation mod *M* are well distributed.
- Basic tool from [Nguyen, Shparlinski, Stern 2001]
 - Use exponential sum techniques
- Need $M \leq 2^n$ and M decreasing during recursion

Algorithm proved for overwhelming fraction of random knapsacks

(日本) (日本) (日本)

Is it practical ?

- We chose n = 96 and summed 48 elements.
- Schroeppel- Shamir 1:
 - Time 1 500 days, Memory 1.8 Gbytes
- Schroeppel- Shamir 2:
 - Time 4 400 days, Memory 300 Mbytes
- Our best implementation (heuristic):
 - Time 10 hours, Memory 1.7 Gbytes

Is it practical ?

- We chose n = 96 and summed 48 elements.
- Schroeppel- Shamir 1:
 - Time 1 500 days, Memory 1.8 Gbytes
- Schroeppel- Shamir 2:
 - Time 4 400 days, Memory 300 Mbytes
- Our best implementation (heuristic):
 - Time 10 hours, Memory 1.7 Gbytes

- For more details:
 - See proceedings or IACR eprint 2010/189.

★ 문 ► ★ 문 ►

Generalizations

- Modular knapsacks (already used in the recursion)
- Noisy knapsacks
- Vectorial knapsacks

通 と く ヨ と く ヨ と

Conclusion

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …