New generic algorithms for hard knapsacks

Nick Howgrave-Graham' Antoine Joux?

35 Park St, Arlington, MA 02474
nickhg@gmail.com
DGA and Université de Versailles Saint-Quentin-en-Yvelines

antoine. joux@méx.org

Eurocrypt 2010, Nice and Monaco, June 1%, 2010

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Knapsack problems

» Given positive integers S and ay, ..., an, consider

equation:
n
S= Z €;idai,
i=1

» Decision knapsack problem:
Does there exist a {0, 1} solution?

» Computational knapsack problem: Find it!

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Hardness

» Hard in general:

» The decision knapsack problem is NP-complete
» The computational knapsack problem is NP-hard

» Easy for a large class:

» Low density knapsacks
» Definition of the density:

_ n
~ log, max; a;

» Solved by lattice reduction oracles when d < 0.94

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Elementary algorithms for generic knapsacks

» Exhaustive search: Time O(2") operations

» Birthday algorithm based on:

n/2 n
Ze,-a; =S- Z €;d;.
i=1 i=n/2+1

Time O(2"/2), memory O(2"/2).

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

State of the art: Schroeppel-Shamir algorithm

» To use birthday algorithm, it suffices to enumerate the set

n/2
5(1) = Ze,-a,-
i=1

in increasing order.
» Can be done with less memory

» Yields state of the art for generic knapsacks:
Time O(2"/2), memory O(2"/4).

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Description of Schroeppel-Shamir algorithm

» Define the following sets (of size 27/4):

n/4
SF) = Ze,-a,-

i=1

n/2
SS) = Z €;aj

i=n/2+1

» Any o € S(") can be written 0 = o, + o

» Moreover:

oL+op<oL+op iff og<op

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Schroeppel-Shamir continued

> If 3,9) is sorted:
» Finding successor of o, + o with same o, is easy

» How to interlace different o, values?

» Schamir and Schroeppel idea:

» Create set of triples (o, + og)), ol a,(f,)))
» Repeat:
» Extract triple with minimum o, 4+ og from the set

» Update into successor (o, + og, 0L, 0R)

» Require priority queue (heap or balanced tree)

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

A modular variant of Schroeppel-Shamir

» Let M be a prime near 2"/4

» For a knapsack solution af), a,g), af) and aff), we have:
UF) + ag) =S— a£2) — O"g) (mod M).

» Let oy denotes this “middle value”

» Algorithm becomes:
» For each possible value of oy:
» For each o, find all o’ such that:

021) + O',(::) =om (mod M).
» For each ¢\, find all o) such that:
022) + ag) =S—oy (mod M).

» Match the above two lists for exact solution (not only mod M)

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Schroeppel-Shamir for unbalanced knapsacks
» Knapsack with extra information:
n
Z € =an
i=1
» Build sets of an/4 elements in each quarter

» Need “good decomposition” = extra polynomial factor
» Time and memory:

<anr{f2> ~ <aa (d 1—a)1-a>n/2

<anr{/44> ~ <aa - 1—a)1—a>n/4'

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Schroeppel-Shamir can be improved

» For simplicity, assume exactly n/2 elements a; appear in S
» Consider decompositions:

S =01+ 02+ 03+ 04,

where each o; is a sum of exactly n/8 values (among n).
» A given solution of the knapsack can be split into:

n/2 _ (n/2)' _ on
(n/8 n/8n/8 n/8> ~ (n/8)1+

decompositions o1 + g2 + 03 + 04.

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Schroeppel-Shamir can be improved (2)

» Fix modulus M, random values Ry, R> and Rs
» Search only decompositions with:

R> (mod M)
S—Ri—R,— R; (mod M)

o1
03

R; (mod M) (op)
Rs (mod M) o4

» Since first 3 conditions imply the fourth:
» Expect one decomposition on average when M ~ 27/3,

Warning: yields a randomized algorithm !

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

First algorithm

» Given M, Ry, R> and Rs
» Solve four unbalanced knapsacks with o = 1/8 on
n elements modulo M

» Expect:

n —1 1 " 1 0.210n
M =~ M =2V
an a®-(1—a)l-@

solutions for each.
» Costs time ~ 20-272" (and memory ~ 20-1367)
» Use Shamir-Schroeppel again to paste the four sets of
solutions together:
» Costs time ~ 204207 and memory ~ 202107

Can be improved using smaller value of M (see paper)

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Going further

» Instead of cutting in four, cut in two
» Choose M, R (mod M) and write S = o1 + 0>
» Withoy = Rand o, =S — R (mod M)
» Solve two unbalanced knapsacks with o = 1/4 on
n elements modulo M
» Assume that subknapsacks can be solved efficiently.

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Going further

» Instead of cutting in four, cut in two
» Choose M, R (mod M) and write S = o1 + 0>
» Withoy =Rand o, =S — R (mod M)
» Solve two unbalanced knapsacks with o = 1/4 on
n elements modulo M
» Assume that subknapsacks can be solved efficiently.
> Yields (7/) ~ 2"/2 decompositions

» Would yield complexity:

o-n/2 (n) ~ 003110
n/4

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Going further

v

Instead of cutting in four, cut in two
Choose M, R (mod M) and write S = o1 + 0>
» Withoy =Rand o, =S — R (mod M)
Solve two unbalanced knapsacks with a = 1/4 on
n elements modulo M
» Assume that subknapsacks can be solved efficiently.

Yields (]/) ~ 2"/ decompositions

v

v

v

v

Would yield complexity:

o-n/2 (n > ~ 003110
n/4

Does assumption holds ?

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Going further: solving subknapsacks
» Essentially, use idea recursively.

» Problem due to unbalanced knapsacks — 4+ ~
(a n/2)
0.35
03 | -]
0.25 i
. 02 - // E
) /

o1s |/ \]
0.1 /

1 \ p
0.05 {/ 1

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Going further: solving subknapsacks

» Bad news: Clear problem when o < 1/3
» Good news: Limited depth of recursion
» Switch to Schroeppel-Shamir at some point

0.5 ——
04 + - 1
03 -
J
02 F R
Schroeppel-Shamir
0.1 - First algorithm 4
/ Theory
Recursive algorithm ———
Theory
0 ! ! ! !
0 0.1 0.2 0.3 0.4 0.5

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Proof technique

» Prove that knapsack evaluation mod M are well distributed.
» Basic tool from [Nguyen, Shparlinski, Stern 2001]
» Use exponential sum techniques

» Need M < 2" and M decreasing during recursion

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Proof technique

» Prove that knapsack evaluation mod M are well distributed.
» Basic tool from [Nguyen, Shparlinski, Stern 2001]
» Use exponential sum techniques

» Need M < 2" and M decreasing during recursion

Algorithm proved for overwhelming fraction of
random knapsacks

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Is it practical ?

» We chose n = 96 and summed 48 elements.
» Schroeppel- Shamir 1:
» Time 1500 days, Memory 1.8 Gbytes
» Schroeppel- Shamir 2:
» Time 4400 days, Memory 300 Mbytes
» Our best implementation (heuristic):
» Time 10 hours, Memory 1.7 Gbytes

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Is it practical ?

» We chose n = 96 and summed 48 elements.
» Schroeppel- Shamir 1:
» Time 1500 days, Memory 1.8 Gbytes
» Schroeppel- Shamir 2:
» Time 4400 days, Memory 300 Mbytes
» Our best implementation (heuristic):
» Time 10 hours, Memory 1.7 Gbytes

» For more details:
» See proceedings or IACR eprint 2010/189.

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Generalizations

» Modular knapsacks (already used in the recursion)
» Noisy knapsacks
» Vectorial knapsacks

Nick Howgrave-Graham, Antoine Joux New generic algorithms for hard knapsacks

Conclusion

Nick Howgrave-Grah w generic algorithms for hard knapsacl

