Multi-property-preserving Domain Extension Using Polynomial-based Modes of Operation

Jooyoung Lee¹ John P. Steinberger²

¹Electronics and Telecommunications Research Institute

²Institute for Theoretical Computer Science Tsinghua University

June 3, 2010

・ 同 ト ・ ヨ ト ・ ヨ ト

Merkle-Damgård transform

Merkle-Damgård transform

- The most popular way to build a cryptographic hash function from a fixed-size compression function
- Preserves collision resistance with an appropriate padding algorithm

If computing collisions becomes somehow feasible for the underlying compression function, then the hash function may fail worse than expected

Generic attacks

- Multicollision attack (Joux, Eurocrypt 2004)
- Long-message second preimage attack (Kelsey and Schneier, Eurocrypt 2005)
- Herding attack (Kelsey and Kohno, Eurocrypt 2006), etc.

Merkle-Damgård transform

Merkle-Damgård transform

- The most popular way to build a cryptographic hash function from a fixed-size compression function
- Preserves collision resistance with an appropriate padding algorithm

If computing collisions becomes somehow feasible for the underlying compression function, then the hash function may fail worse than expected

Generic attacks

- Multicollision attack (Joux, Eurocrypt 2004)
- Long-message second preimage attack (Kelsey and Schneier, Eurocrypt 2005)
- Herding attack (Kelsey and Kohno, Eurocrypt 2006), etc.

Merkle-Damgård transform

Merkle-Damgård transform

- The most popular way to build a cryptographic hash function from a fixed-size compression function
- Preserves collision resistance with an appropriate padding algorithm

If computing collisions becomes somehow feasible for the underlying compression function, then the hash function may fail worse than expected

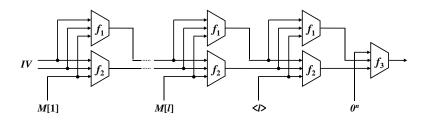
Generic attacks

- Multicollision attack (Joux, Eurocrypt 2004)
- Long-message second preimage attack (Kelsey and Schneier, Eurocrypt 2005)
- Herding attack (Kelsey and Kohno, Eurocrypt 2006), etc.

Wide-pipe strategy

Double-piped mode of operation

- The aforementioned weaknesses can be mitigated by increasing the size of the internal state (Lucks, Asiacrypt 2005)
- The internal state size should be seen as a security parameter of its own right
- Lucks proposed to use a "narrow" compression function in a double-piped mode



Security of double-piped mode of operation

Yasuda analyzed the security of the double-piped mode of operation as a multi-property-preserving domain extension (Eurocrypt 2009)

As a secure message authentication code (MAC)

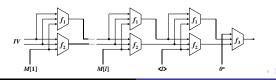
Preserves unforgeability up to $O(2^{5n/6})$ query complexity

As a pseudorandom function

Preserves indistinguishability up to $O(2^n)$ query complexity

As a pseudorandom oracle

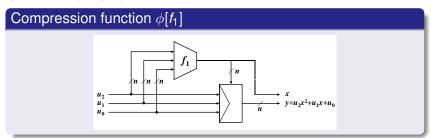
Preserves indifferentiability up to $O(2^n)$ query complexity



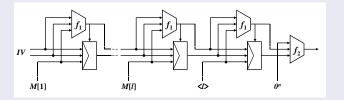
Polynomial-based Modes of Operation

Polynomial-based mode of operation

Efficiency(rate) can be improved by replacing the second primitive by a polynomial



Hash function $H[f_1, f_2]$

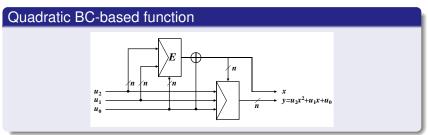


Jooyoung Lee, John P. Steinberger

Polynomial-based Modes of Operation

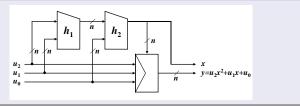
Refinements

With f_1 replaced by a 2*n*-bit key blockcipher in DM-mode:



With f_1 replaced by the cascade of two 2n-n bit primitives:

Quadratic cascade function



Jooyoung Lee, John P. Steinberger Polynomial-based Modes of Operation

Security of polynomial-based mode of operation

We analyzed the security of the polynomial-based mode of operation as a multi-property-preserving domain extension

As a secure message authentication code (MAC)

Preserves unforgeability up to $O(2^n/n)$ query complexity

As a pseudorandom function

Preserves indistinguishability up to $O(2^n/n)$ query complexity

As a pseudorandom oracle

Preserves indifferentiability up to $O(2^{2n/3})$ query complexity

・ロト ・ 理 ト ・ ヨ ト ・

Security of polynomial-based mode of operation

We analyzed the security of the polynomial-based mode of operation as a multi-property-preserving domain extension

As a secure message authentication code (MAC)

Preserves unforgeability up to $O(2^n/n)$ query complexity

As a pseudorandom function

Preserves indistinguishability up to $O(2^n/n)$ query complexity

As a pseudorandom oracle

Preserves indifferentiability up to $O(2^{2n/3})$ query complexity

・ロト ・ 理 ト ・ ヨ ト ・

An and Bellere presented a modular approach for domain extension of a FIL-MAC (Crypto 1999)

Construction of VIL-MAC

- Construct a FIL-WCR using a FIL-MAC.
- 2 Using MD-transform, build a VIL-WCR.
- The composition of the VIL-WCR and a FIL-MAC with an independent key yields a secure VIL-MAC.

The modular approach allows us to focus on the proof of WCR for the polynomial-based compression function

・白シ ・ モン・ ・ ヨン

An and Bellere presented a modular approach for domain extension of a FIL-MAC (Crypto 1999)

Construction of VIL-MAC

- Construct a FIL-WCR using a FIL-MAC.
 - 2 Using MD-transform, build a VIL-WCR.
- The composition of the VIL-WCR and a FIL-MAC with an independent key yields a secure VIL-MAC.

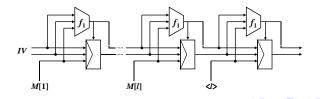
The modular approach allows us to focus on the proof of WCR for the polynomial-based compression function

An and Bellere presented a modular approach for domain extension of a FIL-MAC (Crypto 1999)

Construction of VIL-MAC

- Construct a FIL-WCR using a FIL-MAC.
- **2** Using MD-transform, build a VIL-WCR.
- The composition of the VIL-WCR and a FIL-MAC with an independent key yields a secure VIL-MAC.

The modular approach allows us to focus on the proof of WCR for the polynomial-based compression function

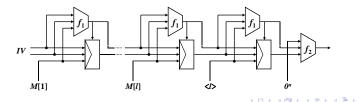


An and Bellere presented a modular approach for domain extension of a FIL-MAC (Crypto 1999)

Construction of VIL-MAC

- Construct a FIL-WCR using a FIL-MAC.
- **2** Using MD-transform, build a VIL-WCR.
- The composition of the VIL-WCR and a FIL-MAC with an independent key yields a secure VIL-MAC.

The modular approach allows us to focus on the proof of WCR for the polynomial-based compression function



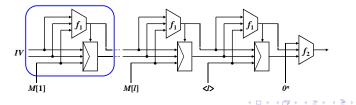
Jooyoung Lee, John P. Steinberger Polynomial-based Modes of Operation

An and Bellere presented a modular approach for domain extension of a FIL-MAC (Crypto 1999)

Construction of VIL-MAC

- Construct a FIL-WCR using a FIL-MAC.
- 2 Using MD-transform, build a VIL-WCR.
- The composition of the VIL-WCR and a FIL-MAC with an independent key yields a secure VIL-MAC.

The modular approach allows us to focus on the proof of WCR for the polynomial-based compression function



Jooyoung Lee, John P. Steinberger Polynomial-based Modes of Operation

Security definitions

Given a function family $f : \text{Keys} \times \text{Dom} \longrightarrow \text{Rng}$,

Unforgeability	Weak collision resistance
Experiment $\text{Exp}_{\mathcal{A}}^{\text{mac}}$	Experiment $\text{Exp}_{\mathcal{A}}^{\text{wcr}}$
<i>k</i>	<i>k</i> ⇔ ^{\$} Keys
$(m, \tau) \leftarrow \mathcal{A}^{f_k(\cdot)}$	$(m,m') \leftarrow \mathcal{A}^{f_k(\cdot)}$
if $f_k(m) = \tau$, <i>m</i> is "new" then	if $f_k(m) = f_k(m'), m \neq m'$ then
output 1	output 1
else	else
output 0	output 0

•
$$\operatorname{Adv}_{f}^{\operatorname{mac}}(\mathcal{A}) = \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{A}}^{\operatorname{mac}} = 1\right]$$

• $\operatorname{Adv}_{f}^{\operatorname{wcr}}(\mathcal{A}) = \operatorname{Pr}\left[\operatorname{Exp}_{\mathcal{A}}^{\operatorname{wcr}} = 1\right]$

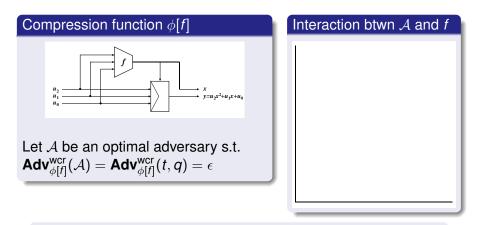
・ロト ・四ト ・ヨト ・ヨト ・

2

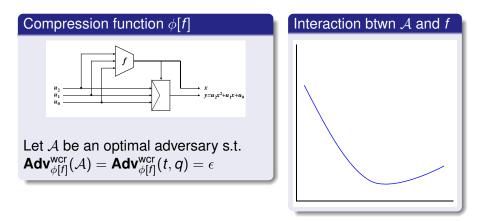
WCR of a polynomial-based compression function

Let $\phi[f]$ be the polynomial-based compression function defined by a function family $f : \{0, 1\}^{\kappa} \times \{0, 1\}^{3n} \rightarrow \{0, 1\}^{n}$. Then,

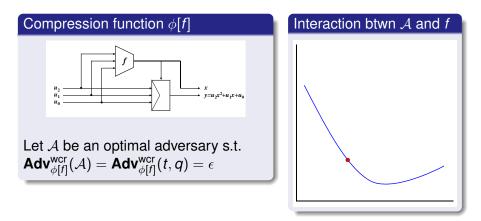
$$\operatorname{\mathsf{Adv}}_{\phi[f]}^{\operatorname{\mathsf{wcr}}}(t,q) \leq 2q(2+\log q)\operatorname{\mathsf{Adv}}_f^{\operatorname{\mathsf{mac}}}\left(t+O(n^2q^4),q
ight).$$



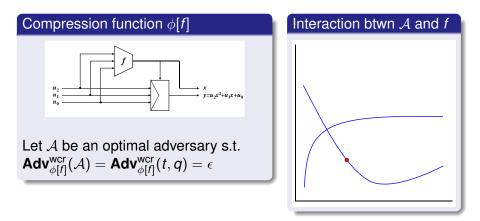
- Oracle access to either $\phi[f]$ or f is equivalent
- *A*'s query determines a quadratic curve
- f's response specifies a point on the curve



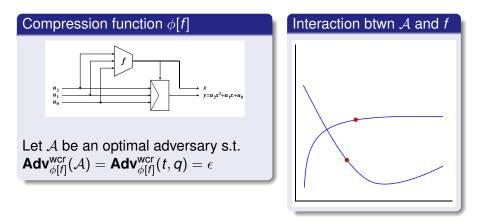
- Oracle access to either $\phi[f]$ or f is equivalent
- *A*'s query determines a quadratic curve
- f's response specifies a point on the curve



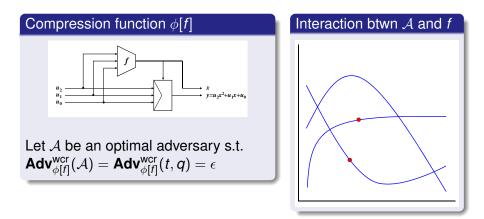
- Oracle access to either $\phi[f]$ or f is equivalent
- *A*'s query determines a quadratic curve
- f's response specifies a point on the curve



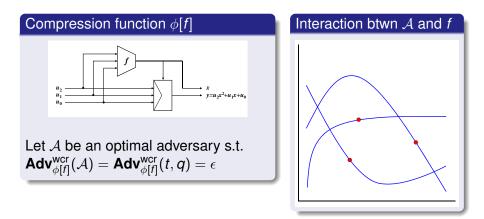
- Oracle access to either $\phi[f]$ or f is equivalent
- *A*'s query determines a quadratic curve
- f's response specifies a point on the curve



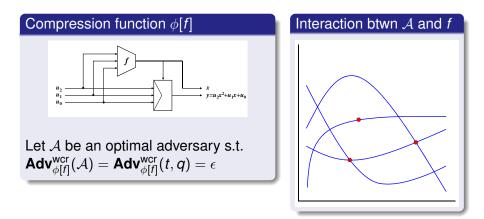
- Oracle access to either $\phi[f]$ or f is equivalent
- *A*'s query determines a quadratic curve
- f's response specifies a point on the curve



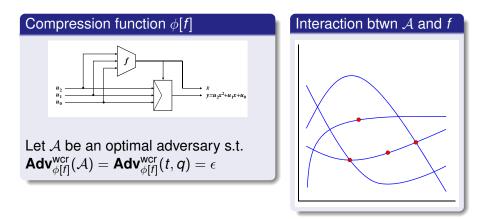
- Oracle access to either $\phi[f]$ or f is equivalent
- *A*'s query determines a quadratic curve
- f's response specifies a point on the curve



- Oracle access to either $\phi[f]$ or f is equivalent
- *A*'s query determines a quadratic curve
- f's response specifies a point on the curve



- Oracle access to either $\phi[f]$ or f is equivalent
- *A*'s query determines a quadratic curve
- f's response specifies a point on the curve



- Oracle access to either $\phi[f]$ or f is equivalent
- *A*'s query determines a quadratic curve
- f's response specifies a point on the curve

Case analysis

- We will construct a forger \mathcal{B} of f using \mathcal{A} as a subroutine
- Let $\gamma = \max \gamma_i$, where $\gamma_i = \sharp$ points already placed on the *i*-th curve

One of the two cases happens with probability at least $\epsilon/2$

イロト イポト イヨト イヨト

Case analysis

- We will construct a forger \mathcal{B} of f using \mathcal{A} as a subroutine
- Let $\gamma = \max \gamma_i$, where $\gamma_i = \sharp$ points already placed on the *i*-th curve

Case 1

 \mathcal{A} finds a collision and $\gamma \leq \log q + 2$

Case 2

$\gamma>\log q+\mathbf{2}$

One of the two cases happens with probability at least $\epsilon/2$

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Case analysis

- We will construct a forger \mathcal{B} of f using \mathcal{A} as a subroutine
- Let $\gamma = \max \gamma_i$, where $\gamma_i = \sharp$ points already placed on the *i*-th curve

Case 1

 \mathcal{A} finds a collision and $\gamma \leq \log q + 2$

Case 2

$$\gamma > \log q + 2$$

One of the two cases happens with probability at least $\epsilon/2$

イロト イポト イヨト イヨト

Case 1: **Pr** [A finds a collision $\land \gamma \leq \log q + 2$] $\geq \epsilon/2$

Forger \mathcal{B}

• \mathcal{B} chooses $i \in \{1, \ldots, q\}$ uniformly at random

- **2** \mathcal{B} runs \mathcal{A} as a subroutine and faithfully answers the queries made by \mathcal{A} until the (i 1)-th query
- On the *i*-query, B presents a forgery by randomly choosing one of the points already placed on the *i*-th curve

Analysis

- With probability $\geq \frac{\epsilon}{2q}$, \mathcal{B} makes a correct guess of the query that determines a collision
- In this case, \mathcal{B} successfully forge *f* with probability $\geq \frac{1}{\log q+2}$

• Therefore, we have $\mathbf{Adv}_{f}^{\mathrm{mac}}(\mathcal{B}) \geq \frac{\epsilon}{2g(\log q+2)}$

ヘロン ヘアン ヘビン ヘビン

Case 1: **Pr** [A finds a collision $\land \gamma \leq \log q + 2$] $\geq \epsilon/2$

Forger \mathcal{B}

• \mathcal{B} chooses $i \in \{1, \ldots, q\}$ uniformly at random

- 2 \mathcal{B} runs \mathcal{A} as a subroutine and faithfully answers the queries made by \mathcal{A} until the (i 1)-th query
- On the *i*-query, B presents a forgery by randomly choosing one of the points already placed on the *i*-th curve

Analysis

- With probability ≥
 ^ϵ/_{2q},
 B makes a correct guess of the query that determines a collision
- In this case, \mathcal{B} successfully forge *f* with probability $\geq \frac{1}{\log q+2}$
- Therefore, we have $\mathbf{Adv}_{f}^{\mathrm{mac}}(\mathcal{B}) \geq \frac{\epsilon}{2q(\log q+2)}$

ヘロン ヘアン ヘビン ヘビン

Balls-in-bins game (Dodis and Steinberger, Crypto 2009)

Players: \mathcal{A} and \mathcal{B}

Parameters: $q, m_1, m_2, M (m_1 < m_2)$

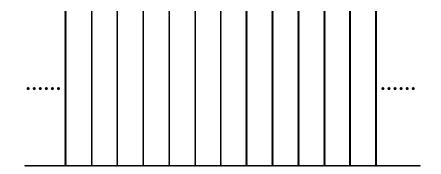
- The game consists of q rounds
- At each round, A publicly places a set of balls into a set of bins such that
 - balls placed at the same round go into distinct bins,
 - 2 the number of bins containing more than m_1 balls at the end of the game is at most M,
 - some bin eventually contains more than m₂ balls
- Before each round, B can secretly "pass" or "guess" a bin that will receive a ball in the next round. B makes exactly one guess throughout the game
- If B makes a correct guess, then B wins. Otherwise, B loses

イロト イポト イヨト イヨト

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 1:



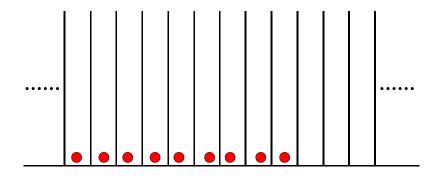
Ξ.

ヘロン 人間 とくほど くほとう

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 1:



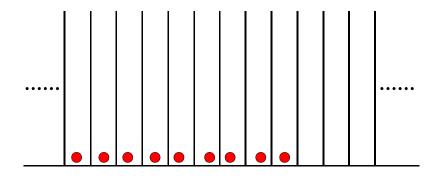
・ロト ・回ト ・ヨト ・ヨト

æ

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 2:



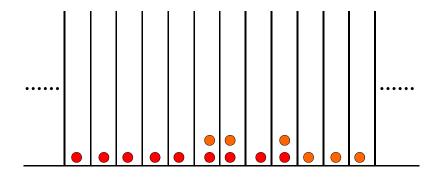
・ロト ・回ト ・ヨト ・ヨト

æ

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 2:



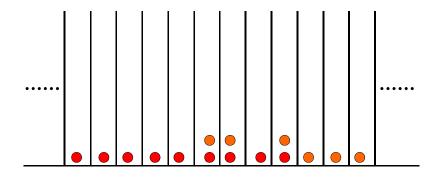
æ

- < 프 > < 프 >

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 3:



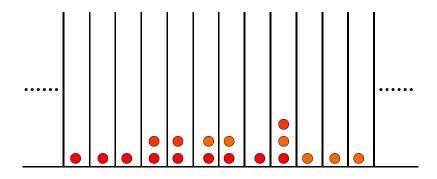
æ

- < 프 > < 프 >

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 3:



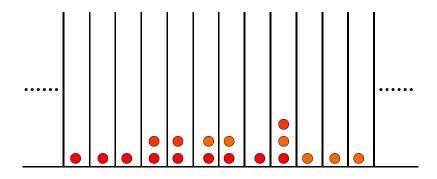
æ

- < 프 > < 프 >

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 4:



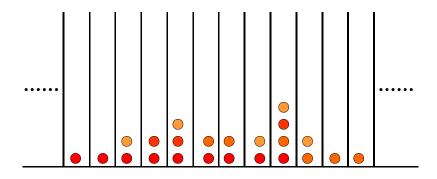
æ

- < 프 > < 프 >

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 4:

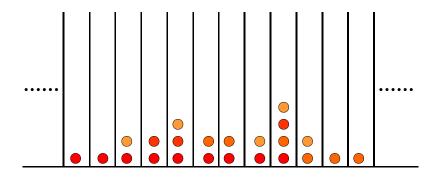


→ E → < E →</p>

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 5:

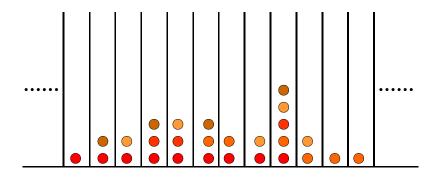


프 🖌 🛪 프 🕨

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 5:

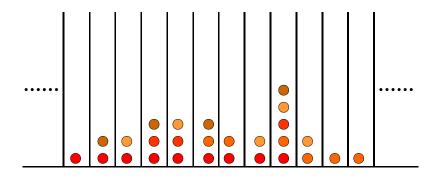


프 🖌 🛪 프 🕨

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 6:

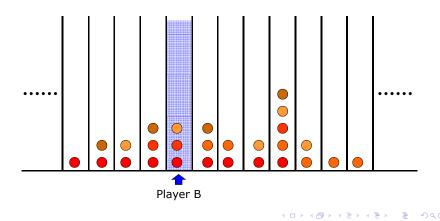


∃ > < ∃ >

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

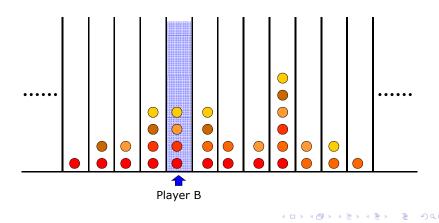
Round 6:



Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

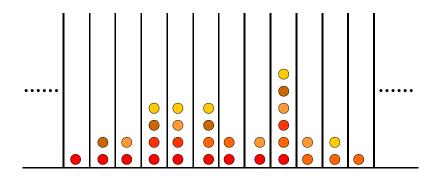
Round 6:



Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 7:

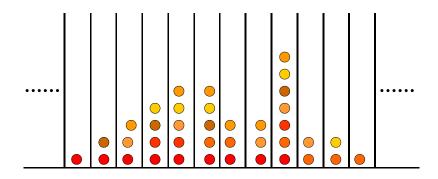


∃ > < ∃ >

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 7:

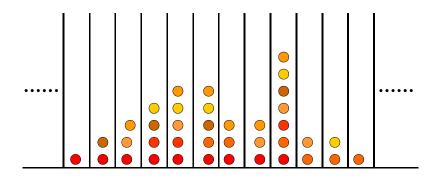


∃ ► < ∃ ►</p>

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 8:



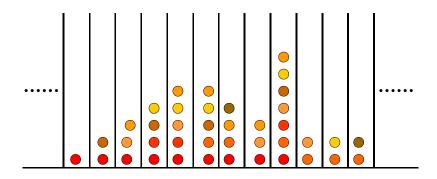
< 🗇 ▶

∃ ► < ∃ ►</p>

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 8:



Э.

▶ < ∃ >

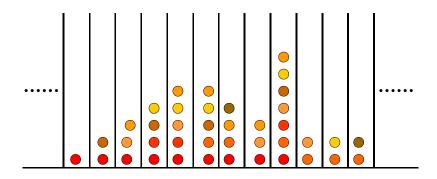
æ

< 🗇 >

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 9:



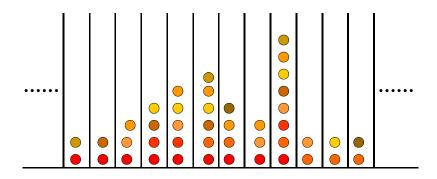
< 🗇 >

∃ ► < ∃ ►</p>

Parameters

$$q = 9, m_1 = 3, m_2 = 7, M = 5$$

Round 9:



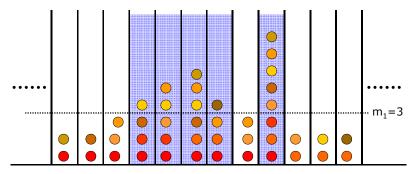
< 🗇 >

▶ < ∃ >

Parameters

 $m_1 = 3, m_2 = 7, M = 5$

End of the game:



#bins containing more than m_1 balls $\leq M(=5)$

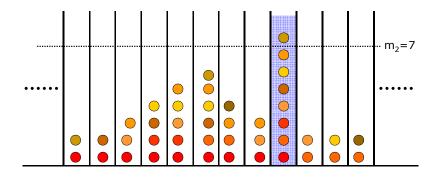
イロト イポト イヨト イヨト

э

Parameters

 $m_1 = 3, m_2 = 7, M = 5$

End of the game:



프 🖌 🛪 프 🕨

< 🗇 🕨

WCF adversary \Rightarrow player \mathcal{A} of a balls-in-bins game

balls-in-bins game: G

- A ball is associated with a point in $\mathbb{F}_{2^n}^2$
- A bin is a quadratic curve in $\mathbb{F}_{2^n}^2$
- On the *i*-th query *u*[*i*] of *A*, the *i*-th round of the game begins
- Given the *i*-th point \(\phi[f](u[i])\) as a response of f, every quadratic curve containing the point except the *i*-th curve itself receives a single ball

Parameters

- The game consists of *q* rounds
- The number of bins that contain more than m₁ = 2 balls at the end of the balls-in-bins game is at most (^q₃) ≤ M = q³
- At the end of the game, some curve contains more than $m_2 = \log q + 2$ balls

WCF adversary \Rightarrow player \mathcal{A} of a balls-in-bins game

balls-in-bins game: G

- A ball is associated with a point in $\mathbb{F}_{2^n}^2$
- A bin is a quadratic curve in $\mathbb{F}_{2^n}^2$
- On the *i*-th query *u*[*i*] of *A*, the *i*-th round of the game begins
- Given the *i*-th point \(\phi[f](u[i])\) as a response of f, every quadratic curve containing the point except the *i*-th curve itself receives a single ball

Parameters

- The game consists of *q* rounds
- The number of bins that contain more than m₁ = 2 balls at the end of the balls-in-bins game is at most (^q₃) ≤ M = q³
- At the end of the game, some curve contains more than $m_2 = \log q + 2$ balls

A player \mathcal{B} of game G with a high probability of winning can be transformed into a successful forger of *f*

If \mathcal{B} makes a correct guess of the curve before the *i*-th round, then it can present a forgery of *f* by computing the intersection of the curve and the *i*-th curve (Probability 1/2)

Winning strategy of player \mathcal{B}

Irrespective of A's strategy, there exists a strategy for B to win game G with probability at least $1/q \cdot 1/(qM)^{1/(m_2-m_1)}$

With $m_1 = 2$, $M = q^3$ and $m_2 = \log q + 2$, the player \mathcal{B} can be transformed into a forger such that

$$\mathsf{Adv}_f^{\mathsf{mac}}(\mathcal{B}) \geq rac{\epsilon}{2} \cdot rac{1}{2} \cdot rac{1}{q} \left(rac{1}{qM}
ight)^{1/(m_2-m_1)} = rac{\epsilon}{64q}$$

・ロット (雪) () () () ()

A player \mathcal{B} of game G with a high probability of winning can be transformed into a successful forger of *f*

If \mathcal{B} makes a correct guess of the curve before the *i*-th round, then it can present a forgery of *f* by computing the intersection of the curve and the *i*-th curve (Probability 1/2)

Winning strategy of player ${\cal B}$

Irrespective of A's strategy, there exists a strategy for B to win game G with probability at least $1/q \cdot 1/(qM)^{1/(m_2-m_1)}$

With $m_1 = 2$, $M = q^3$ and $m_2 = \log q + 2$, the player \mathcal{B} can be transformed into a forger such that

$$\mathsf{Adv}^{\mathsf{mac}}_{f}(\mathcal{B}) \geq rac{\epsilon}{2} \cdot rac{1}{2} \cdot rac{1}{q} \left(rac{1}{qM}
ight)^{1/(m_2-m_1)} = rac{\epsilon}{64q}$$

・ロト ・ 理 ト ・ ヨ ト ・

A player \mathcal{B} of game G with a high probability of winning can be transformed into a successful forger of *f*

If \mathcal{B} makes a correct guess of the curve before the *i*-th round, then it can present a forgery of *f* by computing the intersection of the curve and the *i*-th curve (Probability 1/2)

Winning strategy of player \mathcal{B}

Irrespective of A's strategy, there exists a strategy for B to win game G with probability at least $1/q \cdot 1/(qM)^{1/(m_2-m_1)}$

With $m_1 = 2$, $M = q^3$ and $m_2 = \log q + 2$, the player \mathcal{B} can be transformed into a forger such that

$$\mathsf{Adv}^{\mathsf{mac}}_{f}(\mathcal{B}) \geq rac{\epsilon}{2} \cdot rac{1}{2} \cdot rac{1}{q} \left(rac{1}{qM}
ight)^{1/(m_2-m_1)} = rac{\epsilon}{64q}$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

A player \mathcal{B} of game G with a high probability of winning can be transformed into a successful forger of *f*

If \mathcal{B} makes a correct guess of the curve before the *i*-th round, then it can present a forgery of *f* by computing the intersection of the curve and the *i*-th curve (Probability 1/2)

Winning strategy of player \mathcal{B}

Irrespective of A's strategy, there exists a strategy for B to win game G with probability at least $1/q \cdot 1/(qM)^{1/(m_2-m_1)}$

With $m_1 = 2$, $M = q^3$ and $m_2 = \log q + 2$, the player \mathcal{B} can be transformed into a forger such that

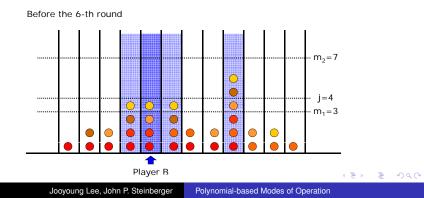
$$\mathsf{Adv}^{\mathsf{mac}}_{f}(\mathcal{B}) \geq \frac{\epsilon}{2} \cdot \frac{1}{2} \cdot \frac{1}{q} \left(\frac{1}{qM}\right)^{1/(m_2 - m_1)} = \frac{\epsilon}{64q}$$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

What is the winning strategy of \mathcal{B} ?

B's strategy

- Choose a round $i \in \{1, \ldots, q\}$ uniformly at random
- 3 Choose a level $j \in \{m_1 + 1, \dots, m_2\}$ uniformly at random
- Before the *i*-th round of the game, guess a bin uniformly at random from all bins containing at least *j* balls already



Summary

Case 1: **Pr** [A finds a collision $\land \gamma \le \log q + 2$] $\ge \epsilon/2$

There exists a forger \mathcal{B}_1 such that $\mathbf{Adv}_f^{\max}(\mathcal{B}_1) \geq \frac{\epsilon}{2q(\log q+2)}$

Case 2: $\Pr[\gamma > \log q + 2] \ge \epsilon/2$

There exists a forger \mathcal{B}_2 such that $\mathbf{Adv}_f^{\mathrm{mac}}(\mathcal{B}_2) \geq \frac{\epsilon}{64a}$

For an optimal forger \mathcal{B} ,

$$egin{aligned} \mathsf{Adv}^{\mathsf{mac}}_f(\mathcal{B}) &\geq \min\left\{rac{1}{2q(\log q+2)},rac{1}{64q}
ight\} imes\epsilon \ &= rac{1}{2q(\log q+2)}\mathsf{Adv}^{\mathsf{wcr}}_{\phi[f]}(\mathcal{A}) \end{aligned}$$

$$\mathsf{Adv}^{\mathsf{wcr}}_{\phi[f]}(\mathcal{A}) \leq 2q(\log q + 2)\mathsf{Adv}^{\mathsf{mac}}_{f}(\mathcal{B})$$

Thank You

Jooyoung Lee, John P. Steinberger Polynomial-based Modes of Operation

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>