Computational Soundness, Co-Induction and Encryption Cycles

Daniele Micciancio

Department of Computer Science and Engineering University of California, San Diego

June 1, 2010 (Eurocrypt'10, Nice/Monte Carlo)

Introduction

Computational Cryptography

- Cryptographic functions are modeled as algorithms
- Messages exchanged by parties are bitstrings
- Security holds against arbitrary polynomial time adversaries

• Symbolic Security (Dolev-Yao model)

- Messages are symbolic expressions
- Cryptographic functions work on abstract data types
- Security holds against symbolic adversaries that respect the abstraction

Introduction

- Computational Cryptography
 - Cryptographic functions are modeled as algorithms
 - Messages exchanged by parties are bitstrings
 - Security holds against arbitrary polynomial time adversaries
- Symbolic Security (Dolev-Yao model)
 - Messages are symbolic expressions
 - Cryptographic functions work on abstract data types
 - Security holds against symbolic adversaries that respect the abstraction

Introduction

- Computational Cryptography
 - Cryptographic functions are modeled as algorithms
 - Messages exchanged by parties are bitstrings
 - Security holds against arbitrary polynomial time adversaries
- Symbolic Security (Dolev-Yao model)
 - Messages are symbolic expressions
 - Cryptographic functions work on abstract data types
 - Security holds against symbolic adversaries that respect the abstraction

Computational vs Symbolic Security

- Computational cryptography
 - Strong security guarantees $\sqrt{}$
 - Allows to define new cryptographic primitives $\sqrt{}$
 - Proofs are often complex X
- Symbolic Security
 - Much weaker security guarantees X
 - Cryptography is hard-wired into model X
 - ullet Security proofs can be mechanically verified or automated ullet

Computational vs Symbolic Security

- Computational cryptography
 - Strong security guarantees V
 - Allows to define new cryptographic primitives $\sqrt{}$
 - Proofs are often complex X
- Symbolic Security
 - Much weaker security guarantees X
 - Cryptography is hard-wired into model X
 - ullet Security proofs can be mechanically verified or automated ullet

Computational vs Symbolic Security

- Computational cryptography
 - Strong security guarantees
 - Allows to define new cryptographic primitives $\sqrt{}$
 - Proofs are often complex X
- Symbolic Security
 - Much weaker security guarantees X
 - Cryptography is hard-wired into model X
 - ullet Security proofs can be mechanically verified or automated $oldsymbol{\sqrt{}}$

Computational Soundness

- Goal: achieve the best of both words
 - Symbolic (possibly mechanized) security proofs
 - Strong security guarantees againt any polynomial time attacker
- Brief history
 - (Abadi,Rogaway 2002) First result of this kind. Limited to single message protocols and passive (eavesdropping) adversaries.
 - Many extensions since then: more cryptograhic primitives, active attacks, universal composability (Abadi, Adao, Bana, Backes, Canetti, Cortier, Jurjens, Gordon, Herzog, Laud, Mitchell, Micciancio, Panjwani, Pfitzmann, Ramanathan, Rogaway, Teague, Scedrov, Warinschi, Vene, ...)
- This work:
 - Back to basic Abadi-Rogaway model
 - Revisit framework/approach to defining adversarial knowledge

Computational Soundness

- Goal: achieve the best of both words
 - Symbolic (possibly mechanized) security proofs
 - Strong security guarantees againt any polynomial time attacker
- Brief history
 - (Abadi,Rogaway 2002) First result of this kind. Limited to single message protocols and passive (eavesdropping) adversaries.
 - Many extensions since then: more cryptograhic primitives, active attacks, universal composability (Abadi, Adao, Bana, Backes, Canetti, Cortier, Jurjens, Gordon, Herzog, Laud, Mitchell, Micciancio, Panjwani, Pfitzmann, Ramanathan, Rogaway, Teague, Scedrov, Warinschi, Vene, ...)
- This work:
 - Back to basic Abadi-Rogaway model
 - Revisit framework/approach to defining adversarial knowledge

Computational Soundness

- Goal: achieve the best of both words
 - Symbolic (possibly mechanized) security proofs
 - Strong security guarantees againt any polynomial time attacker
- Brief history
 - (Abadi,Rogaway 2002) First result of this kind. Limited to single message protocols and passive (eavesdropping) adversaries.
 - Many extensions since then: more cryptograhic primitives, active attacks, universal composability (Abadi, Adao, Bana, Backes, Canetti, Cortier, Jurjens, Gordon, Herzog, Laud, Mitchell, Micciancio, Panjwani, Pfitzmann, Ramanathan, Rogaway, Teague, Scedrov, Warinschi, Vene, ...)
- This work:
 - Back to basic Abadi-Rogaway model
 - Revisit framework/approach to defining adversarial knowledge

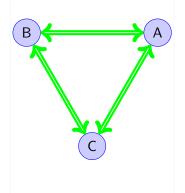
Outline

- Abadi-Rogaway model and computational soundness
- Defining the adversarial knowledge
 - Induction
 - Co-Induction
- 3 Conclusion and Open Problems

Outline

- Abadi-Rogaway model and computational soundness
- 2 Defining the adversarial knowledge
 - Induction
 - Co-Induction
- 3 Conclusion and Open Problems

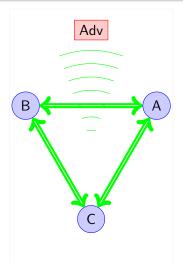
The Abadi-Rogaway model



Protocol parties

- are given some initial knowledge (e.g., public keys, own secret key, etc.)
- interact by exchanging messages
- Adversary
 - Passively eavesdrop communications between parties
 - Infers knowledge from messages

The Abadi-Rogaway model



Protocol parties

- are given some initial knowledge (e.g., public keys, own secret key, etc.)
- interact by exchanging messages
- Adversary
 - Passively eavesdrop communications between parties
 - Infers knowledge from messages

Some questions

- What kind of messages are exchanged among the parties?
- How is the adversarial knowledge represented?
- What does the adversary know after seeing a sequence of messages?

Messages

- Keys: *K*₁, *K*₂, . . .
- Data: *D*₁, *D*₁, . . .
- Messages: $E ::= K \mid D \mid (E_0, E_1) \mid \{E\}_K$
- Example: Hybrid encryption
 - K_1 : long term key, K_2 : session key
 - $(\{K_2\}_{K_1}, \{D\}_{K_2}).$
- Extensions:
 - Pseudorandom keys: $K ::= G_0(K)$; $G_1(K)$
 - Secret sharing: $K ::= S_1(K), \ldots, S_n(K)$
 - Hashing: E := h(E), etc.

Messages

- Keys: K_1 , K_2 , ...
- Data: D_1, D_1, \dots
- Messages: $E ::= K \mid D \mid (E_0, E_1) \mid \{E\}_K$
- Example: Hybrid encryption
 - K_1 : long term key, K_2 : session key
 - $\bullet \ (\{K_2\}_{K_1}, \{D\}_{K_2}).$
- Extensions:
 - Pseudorandom keys: $K := G_0(K)$; $G_1(K)$
 - Secret sharing: $K ::= S_1(K), \ldots, S_n(K)$
 - Hashing: E := h(E), etc.

Messages

- Keys: *K*₁, *K*₂, . . .
- Data: $D_1, D_1, ...$
- Messages: $E ::= K \mid D \mid (E_0, E_1) \mid \{E\}_K$
- Example: Hybrid encryption
 - K_1 : long term key, K_2 : session key
 - $(\{K_2\}_{K_1}, \{D\}_{K_2}).$
- Extensions:
 - Pseudorandom keys: $K ::= G_0(K)$; $G_1(K)$
 - Secret sharing: $K ::= S_1(K), \ldots, S_n(K)$
 - Hashing: E := h(E), etc.

Adversarial knowledge

- Keys can be either completely secret or known to the adversary
- ullet Adversarial knowledge is represented by a set of known keys S
- An adversary knowing keys S, when intercepts a message E, "sees" a pattern

$$\begin{array}{rcl} \mathbf{pat}(K,S) &=& K \\ \mathbf{pat}(D,S) &=& D \\ \mathbf{pat}((E_1,E_2),S) &=& (\mathbf{pat}(E_1,S),\mathbf{pat}(E_2,S)) \\ \mathbf{pat}(\{E\}_K,S) &=& \left\{ \begin{array}{ll} \{\mathbf{pat}(E,S)\}_K & \text{if } K \in S \\ \square & \text{otherwise} \end{array} \right. \end{array}$$

Adversarial knowledge

- Keys can be either completely secret or known to the adversary
- ullet Adversarial knowledge is represented by a set of known keys S
- An adversary knowing keys S, when intercepts a message E, "sees" a pattern

$$\begin{array}{rcl} \mathbf{pat}(K,S) &=& K \\ \mathbf{pat}(D,S) &=& D \\ \mathbf{pat}((E_1,E_2),S) &=& (\mathbf{pat}(E_1,S),\mathbf{pat}(E_2,S)) \\ \mathbf{pat}(\{E\}_K,S) &=& \left\{ \begin{array}{ll} \{\mathbf{pat}(E,S)\}_K & \text{if } K \in S \\ \Box & \text{otherwise} \end{array} \right. \end{array}$$

Computational Semantics

- Expressions are evaluated using cryptographic algorithms
- The result of an expression E is a probability distribution over bitstrings $[\![E]\!]$
- If two expressions are computationally indistinguishable $\llbracket E_1 \rrbracket \approx \llbracket E_2 \rrbracket$, they reveal the same amount of information.

Computationally Sound Symbolic Semantics

- Symbolic semantics map expressions (messages) E to patterns
- Two expressions are symbolically equivalent if they map to the same pattern
- The symbolic semantics is computationally sound if whenever E_1 and E_2 are symbolically equivalent, it holds that $||E_1|| \approx ||E_2||$.

Outline

- Abadi-Rogaway model and computational soundness
- Defining the adversarial knowledge
 - Induction
 - Co-Induction
- Conclusion and Open Problems

A simple example

- The adversary intercepts the messages $E = (K_1, \{K_2\}_{K_3}, \{(\{D_1\}_{K_2}, D_2, \}_{K_1})$
- The adversary learns K_1 because it is sent in clear, but not K_2 or K_3 . The adversarial knowledge is $S = \{K_1\}$.
- The adversary's "view" of the messages is $pat(E, \{K_1\}) = (K_1, \square, \{(\square, D_2, \}_{K_1}))$

A simple example

- The adversary intercepts the messages $E = (K_1, \{K_2\}_{K_3}, \{(\{D_1\}_{K_2}, D_2, \}_{K_1})$
- The adversary learns K_1 because it is sent in clear, but not K_2 or K_3 . The adversarial knowledge is $S = \{K_1\}$.
- The adversary's "view" of the messages is $pat(E, \{K_1\}) = (K_1, \square, \{(\square, D_2, \}_{K_1}))$

A simple example

- The adversary intercepts the messages $E = (K_1, \{K_2\}_{K_3}, \{(\{D_1\}_{K_2}, D_2, \}_{K_1})$
- The adversary learns K_1 because it is sent in clear, but not K_2 or K_3 . The adversarial knowledge is $S = \{K_1\}$.
- The adversary's "view" of the messages is $pat(E, \{K_1\}) = (K_1, \square, \{(\square, D_2, \}_{K_1}))$

- Adversary sees $\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4}, K_1$
- Keys known to the adversary
 - Initial knowledge: Ø
 - K₁: sent in the clear
 - K_4 : encrypted under K_1
 - K_5 : encrypted under K_4
 - K_3 : double encrypted under K_1 and K_4
- Adversarial knowledge: $S = \{K_1, K_3, K_4, K_5\}$

- Adversary sees $\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4}, K_1$
- Keys known to the adversary
 - Initial knowledge: Ø
 - K_1 : sent in the clear
 - K_4 : encrypted under K_1
 - K_5 : encrypted under K_4
 - K_3 : double encrypted under K_1 and K_4
- Adversarial knowledge: $S = \{K_1, K_3, K_4, K_5\}$

- Adversary sees $\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4}, K_1$
- Keys known to the adversary
 - Initial knowledge: Ø
 - K₁: sent in the clear
 - K_4 : encrypted under K_1
 - K_5 : encrypted under K_4
 - K_3 : double encrypted under K_1 and K_4
- Adversarial knowledge: $S = \{K_1, K_3, K_4, K_5\}$

- Adversary sees $\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4}, K_1$
- Keys known to the adversary
 - Initial knowledge: ∅
 - K_1 : sent in the clear
 - K_4 : encrypted under K_1
 - K_5 : encrypted under K_4
 - K_3 : double encrypted under K_1 and K_4
- Adversarial knowledge: $S = \{K_1, K_3, K_4, K_5\}$

- Adversary sees $\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4}, K_1$
- Keys known to the adversary
 - Initial knowledge: ∅
 - K_1 : sent in the clear
 - K_4 : encrypted under K_1
 - K_5 : encrypted under K_4
 - K_3 : double encrypted under K_1 and K_4
- Adversarial knowledge: $S = \{K_1, K_3, K_4, K_5\}$

- Adversary sees $\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4}, K_1$
- Keys known to the adversary
 - Initial knowledge: ∅
 - K₁: sent in the clear
 - K_4 : encrypted under K_1
 - K₅: encrypted under K₄
 - K_3 : double encrypted under K_1 and K_4
- Adversarial knowledge: $S = \{K_1, K_3, K_4, K_5\}$

- Adversary sees $\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4}, K_1$
- Keys known to the adversary
 - Initial knowledge: ∅
 - K_1 : sent in the clear
 - K₄: encrypted under K₁
 - K₅: encrypted under K₄
 - K_3 : double encrypted under K_1 and K_4
- Adversarial knowledge: $S = \{K_1, K_3, K_4, K_5\}$

Adversarial knowledge as a fixpoint

- The adversarial knowedge defined by inductive key recovery process can be defined as a fixpoint of an appropriate operator
- ullet Key recovery operator $\mathcal{F}_{m{E}}\colon \mathcal{P}(\mathbf{Keys}) o \mathcal{P}(\mathbf{Keys})$

$$\mathcal{F}_{\mathcal{K}}(S) = \{K\}$$

$$\mathcal{F}_{\mathcal{D}}(S) = \emptyset$$

$$\mathcal{F}_{(E_1, E_2)}(S) = \mathcal{F}_{E_1}(S) \cup \mathcal{F}_{E_2}(S)$$

$$\mathcal{F}_{\{E\}_{\mathcal{K}}}(S) = \begin{cases} \mathcal{F}_{E}(S) & \text{if } K \in S \\ \emptyset & \text{otherwise} \end{cases}$$

• Intuition: $\mathcal{F}_{\mathcal{E}}(S)$ is the set of keys immediately recoverable from E given the ability to decrypt under the keys in S.

Adversarial knowledge as a fixpoint

- The set of keys S known to an adversary that intercepts message E, should satisfy $\mathcal{F}_E(S) = S$
- Some expressions have more than one fixpoint, e.g.,

$$E = \{K\}_{K}:$$
• $\mathcal{F}_{E}(\emptyset) = \emptyset$
• $\mathcal{F}_{E}(\{\text{Keys}\}) = \{\text{Keys}\}.$

Inductive definition gives the least fixpoint:

$$\emptyset \subset \mathcal{F}_E(\emptyset) \subset \mathcal{F}_E^2(\emptyset) \subset \cdots \subset \operatorname{fix}(\mathcal{F}_E) = \mathcal{F}_E(\operatorname{fix}(\mathcal{F}_E))$$

• Dolev-Yao/Abadi-Rogaway: The symbolic semantics of E is $pat(E, fix(\mathcal{F}_E))$.

Adversarial knowledge as a fixpoint

- The set of keys S known to an adversary that intercepts message E, should satisfy $\mathcal{F}_E(S) = S$
- Some expressions have more than one fixpoint, e.g.,
 E = {K}_K:

$$\mathbf{L} = \{ \mathbf{N} \} \mathbf{K} \cdot \mathbf{L}$$

- $\mathcal{F}_{\mathcal{E}}(\emptyset) = \emptyset$
- $\mathcal{F}_{\mathcal{E}}(\{\mathsf{Keys}\}) = \{\mathsf{Keys}\}.$
- Inductive definition gives the least fixpoint:

$$\emptyset \subset \mathcal{F}_E(\emptyset) \subset \mathcal{F}_E^2(\emptyset) \subset \cdots \subset \operatorname{fix}(\mathcal{F}_E) = \mathcal{F}_E(\operatorname{fix}(\mathcal{F}_E))$$

• Dolev-Yao/Abadi-Rogaway: The symbolic semantics of E is $pat(E, fix(\mathcal{F}_E))$.

Adversarial knowledge as a fixpoint

- The set of keys S known to an adversary that intercepts message E, should satisfy $\mathcal{F}_E(S) = S$
- Some expressions have more than one fixpoint, e.g.,
 E = {K}_K:
 - $\mathcal{F}_F(\emptyset) = \emptyset$
 - $\mathcal{F}_{E}(\emptyset) = \emptyset$
 - $\mathcal{F}_E(\{Keys\}) = \{Keys\}.$
- Inductive definition gives the least fixpoint:

$$\emptyset \subset \mathcal{F}_{\mathcal{E}}(\emptyset) \subset \mathcal{F}_{\mathcal{E}}^2(\emptyset) \subset \cdots \subset \mathsf{fix}(\mathcal{F}_{\mathcal{E}}) = \mathcal{F}_{\mathcal{E}}(\mathsf{fix}(\mathcal{F}_{\mathcal{E}}))$$

• Dolev-Yao/Abadi-Rogaway: The symbolic semantics of E is $pat(E, fix(\mathcal{F}_E))$.

Adversarial knowledge as a fixpoint

- The set of keys S known to an adversary that intercepts message E, should satisfy $\mathcal{F}_F(S) = S$
- Some expressions have more than one fixpoint, e.g., $E = \{K\}_{K}$:
 - $\mathcal{F}_{\mathsf{F}}(\emptyset) = \emptyset$

 - $\mathcal{F}_F(\{Keys\}) = \{Keys\}.$
- Inductive definition gives the least fixpoint:

$$\emptyset \subset \mathcal{F}_{\mathcal{E}}(\emptyset) \subset \mathcal{F}^2_{\mathcal{E}}(\emptyset) \subset \cdots \subset \mathsf{fix}(\mathcal{F}_{\mathcal{E}}) = \mathcal{F}_{\mathcal{E}}(\mathsf{fix}(\mathcal{F}_{\mathcal{E}}))$$

 Dolev-Yao/Abadi-Rogaway: The symbolic semantics of E is $pat(E, fix(\mathcal{F}_F)).$

- Is the Abadi-Rogaway symbolic semantic computationally sound? In general, no!
- Abadi-Rogaway: if two expressions with no encryption cycles are symbolically equivalent, then they are computationally indistinguishable
- Examples of cyclic expressions:
 - $\{K\}_K$ • $\{K_1\}_{K_2}, \{K_2\}_{K_3}, \{K_3\}_{K_1}$
- What if the expressions contain cycles?
 - Long standing open problem: come up with encryption scheme that breaks down in the precence of encryption cycles
 - Much recent work on "key dependent message" security (Boneh, Halevi, Hamburg, Ostrovsky 2008) (Applebaum, Cash, Peikert, Sahai 2009)

- Is the Abadi-Rogaway symbolic semantic computationally sound? In general, no!
- Abadi-Rogaway: if two expressions with no encryption cycles are symbolically equivalent, then they are computationally indistinguishable
- Examples of cyclic expressions:
 - $\{K\}_K$ • $\{K_1\}_{K_2}, \{K_2\}_{K_3}, \{K_3\}_{K_1}$
- What if the expressions contain cycles?
 - Long standing open problem: come up with encryption scheme that breaks down in the precence of encryption cycles
 - Much recent work on "key dependent message" security (Boneh, Halevi, Hamburg, Ostrovsky 2008) (Applebaum, Cash, Peikert, Sahai 2009)

- Is the Abadi-Rogaway symbolic semantic computationally sound? In general, no!
- Abadi-Rogaway: if two expressions with no encryption cycles are symbolically equivalent, then they are computationally indistinguishable
- Examples of cyclic expressions:
 - $\{K\}_K$ • $\{K_1\}_{K_2}, \{K_2\}_{K_3}, \{K_3\}_{K_1}$
- What if the expressions contain cycles?
 - Long standing open problem: come up with encryption scheme that breaks down in the precence of encryption cycles
 - Much recent work on "key dependent message" security (Boneh, Halevi, Hamburg, Ostrovsky 2008) (Applebaum, Cash, Peikert, Sahai 2009)

- Is the Abadi-Rogaway symbolic semantic computationally sound? In general, no!
- Abadi-Rogaway: if two expressions with no encryption cycles are symbolically equivalent, then they are computationally indistinguishable
- Examples of cyclic expressions:
 - {K}_K
 - $\{K_1\}_{K_2}, \{K_2\}_{K_3}, \{K_3\}_{K_1}$
- What if the expressions contain cycles?
 - Long standing open problem: come up with encryption scheme that breaks down in the precence of encryption cycles
 - Much recent work on "key dependent message" security (Boneh, Halevi, Hamburg, Ostrovsky 2008) (Applebaum, Cash, Peikert, Sahai 2009)

- Is the Abadi-Rogaway symbolic semantic computationally sound? In general, no!
- Abadi-Rogaway: if two expressions with no encryption cycles are symbolically equivalent, then they are computationally indistinguishable
- Examples of cyclic expressions:
 - {*K*}_{*K*}
 - $\{K_1\}_{K_2}, \{K_2\}_{K_3}, \{K_3\}_{K_1}$
- What if the expressions contain cycles?
 - Long standing open problem: come up with encryption scheme that breaks down in the precence of encryption cycles
 - Much recent work on "key dependent message" security (Boneh, Halevi, Hamburg, Ostrovsky 2008) (Applebaum, Cash, Peikert, Sahai 2009)

- Goal: better understand relation between symbolc semantics and standard computational security definition
- Technique: define adversarial knowledge as the greatest fixpoint (FIX) of \mathcal{F}_E (by "co-induction")
- Intuition: assume no key is guaranteed to be secret, and prove that more and more keys are hidden to the adversary
- Results:
 - Theorem 1: The GFP semantics is computationally sound, i.e., for any two expressions E_1 , E_2 : $\operatorname{pat}(E_1,\operatorname{FIX}(\mathcal{F}_{E_1})) = \operatorname{pat}(E_2,\operatorname{FIX}(\mathcal{F}_{E_2})) \Longrightarrow \llbracket E_1 \rrbracket \approx \llbracket E_2 \rrbracket$
 - Theorem 2: If E is acyclic, then $fix(\mathcal{F}_E) = FIX(\mathcal{F}_E)$
 - Corollary: if E_1, E_2 have no encryption cycles and $\mathsf{pat}(E_1, \mathsf{fix}(\mathcal{F}_{E_1})) = \mathsf{pat}(E_2, \mathsf{fix}(\mathcal{F}_{E_2}))$, then $[\![E_1]\!] \approx [\![E_2]\!]$

- Goal: better understand relation between symbolc semantics and standard computational security definition
- Technique: define adversarial knowledge as the greatest fixpoint (FIX) of F_E (by "co-induction")
- Intuition: assume no key is guaranteed to be secret, and prove that more and more keys are hidden to the adversary
- Results:
 - Theorem 1: The GFP semantics is computationally sound, i.e., for any two expressions E_1 , E_2 : $\operatorname{pat}(E_1,\operatorname{FIX}(\mathcal{F}_{E_1})) = \operatorname{pat}(E_2,\operatorname{FIX}(\mathcal{F}_{E_2})) \Longrightarrow \llbracket E_1 \rrbracket \approx \llbracket E_2 \rrbracket$
 - Theorem 2: If E is acyclic, then $fix(\mathcal{F}_E) = FIX(\mathcal{F}_E)$
 - Corollary: if E_1 , E_2 have no encryption cycles and $\mathbf{pat}(E_1, \mathrm{fix}(\mathcal{F}_{E_1})) = \mathbf{pat}(E_2, \mathrm{fix}(\mathcal{F}_{E_2}))$, then $[\![E_1]\!] \approx [\![E_2]\!]$

- Goal: better understand relation between symbolc semantics and standard computational security definition
- Technique: define adversarial knowledge as the greatest fixpoint (FIX) of F_E (by "co-induction")
- Intuition: assume no key is guaranteed to be secret, and prove that more and more keys are hidden to the adversary
- Results:
 - Theorem 1: The GFP semantics is computationally sound, i.e., for any two expressions E_1 , E_2 : $\mathbf{pat}(E_1, \mathsf{FIX}(\mathcal{F}_{E_1})) = \mathbf{pat}(E_2, \mathsf{FIX}(\mathcal{F}_{E_2})) \Longrightarrow \llbracket E_1 \rrbracket \approx \llbracket E_2 \rrbracket$
 - Theorem 2: If E is acyclic, then $fix(\mathcal{F}_E) = FIX(\mathcal{F}_E)$
 - Corollary: if E_1 , E_2 have no encryption cycles and $\mathsf{pat}(E_1,\mathsf{fix}(\mathcal{F}_{E_1})) = \mathsf{pat}(E_2,\mathsf{fix}(\mathcal{F}_{E_2}))$, then $[\![E_1]\!] \approx [\![E_2]\!]$

- Goal: better understand relation between symbolc semantics and standard computational security definition
- Technique: define adversarial knowledge as the greatest fixpoint (FIX) of F_E (by "co-induction")
- Intuition: assume no key is guaranteed to be secret, and prove that more and more keys are hidden to the adversary
- Results:
 - Theorem 1: The GFP semantics is computationally sound, i.e., for any two expressions E_1 , E_2 : $pat(E_1, FIX(\mathcal{F}_{E_1})) = pat(E_2, FIX(\mathcal{F}_{E_2})) \Longrightarrow [\![E_1]\!] \approx [\![E_2]\!]$
 - Theorem 2: If E is acyclic, then $fix(\mathcal{F}_E) = FIX(\mathcal{F}_E)$
 - Corollary: if E_1 , E_2 have no encryption cycles and $\mathbf{pat}(E_1, \mathrm{fix}(\mathcal{F}_{E_1})) = \mathbf{pat}(E_2, \mathrm{fix}(\mathcal{F}_{E_2}))$, then $[\![E_1]\!] \approx [\![E_2]\!]$

- Goal: better understand relation between symbolc semantics and standard computational security definition
- Technique: define adversarial knowledge as the greatest fixpoint (FIX) of F_E (by "co-induction")
- Intuition: assume no key is guaranteed to be secret, and prove that more and more keys are hidden to the adversary
- Results:
 - Theorem 1: The GFP semantics is computationally sound, i.e., for any two expressions E_1 , E_2 : $pat(E_1, FIX(\mathcal{F}_{E_1})) = pat(E_2, FIX(\mathcal{F}_{E_2})) \Longrightarrow [\![E_1]\!] \approx [\![E_2]\!]$
 - Theorem 2: If E is acyclic, then $fix(\mathcal{F}_E) = FIX(\mathcal{F}_E)$
 - Corollary: if E_1 , E_2 have no encryption cycles and $\mathsf{pat}(E_1,\mathsf{fix}(\mathcal{F}_{E_1})) = \mathsf{pat}(E_2,\mathsf{fix}(\mathcal{F}_{E_2}))$, then $[\![E_1]\!] \approx [\![E_2]\!]$

- Goal: better understand relation between symbolc semantics and standard computational security definition
- Technique: define adversarial knowledge as the greatest fixpoint (FIX) of F_E (by "co-induction")
- Intuition: assume no key is guaranteed to be secret, and prove that more and more keys are hidden to the adversary
- Results:
 - Theorem 1: The GFP semantics is computationally sound, i.e., for any two expressions E_1 , E_2 : $pat(E_1, FIX(\mathcal{F}_{E_1})) = pat(E_2, FIX(\mathcal{F}_{E_2})) \Longrightarrow [\![E_1]\!] \approx [\![E_2]\!]$
 - Theorem 2: If E is acyclic, then $fix(\mathcal{F}_E) = FIX(\mathcal{F}_E)$
 - Corollary: if E_1 , E_2 have no encryption cycles and $\mathbf{pat}(E_1, \mathrm{fix}(\mathcal{F}_{E_1})) = \mathbf{pat}(E_2, \mathrm{fix}(\mathcal{F}_{E_2}))$, then $[\![E_1]\!] \approx [\![E_2]\!]$

Greatest fixpoints

• Computing $FIX(\mathcal{F}_E)$

$$\mathsf{Keys}\supset \mathcal{F}_{\mathcal{E}}(\mathsf{Keys})\supset \mathcal{F}_{\mathcal{E}}^2(\mathsf{Keys})\supset \cdots \supset \mathsf{FIX}(\mathcal{F}_{\mathcal{E}})=\mathcal{F}_{\mathcal{E}}(\mathsf{FIX}(\mathcal{F}_{\mathcal{E}}))$$

- Reminder: $\mathcal{F}_E(S)$ is the set of keys immediately recoverable from E using the keys in S for decryption
- Example: $E = (\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4}, K_1)$
 - Initial set: **Keys** = $\{K_1, K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E(Keys) = \{K_1, K_2, K_3, K_4, K_5\} = Keys$
 - $FIX(\mathcal{F}_E) = \{K_1, K_2, K_3, K_4, K_5\} = \mathbf{Keys}$

Greatest fixpoints

• Computing $FIX(\mathcal{F}_E)$

$$\text{Keys}\supset \mathcal{F}_{\textit{E}}(\text{Keys})\supset \mathcal{F}_{\textit{E}}^2(\text{Keys})\supset \cdots \supset \text{FIX}(\mathcal{F}_{\textit{E}})=\mathcal{F}_{\textit{E}}(\text{FIX}(\mathcal{F}_{\textit{E}}))$$

- Reminder: $\mathcal{F}_E(S)$ is the set of keys immediately recoverable from E using the keys in S for decryption
- Example: $E = (\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4}, K_1)$
 - Initial set: **Keys** = $\{K_1, K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E(Keys) = \{K_1, K_2, K_3, K_4, K_5\} = Keys$
 - $FIX(\mathcal{F}_E) = \{K_1, K_2, K_3, K_4, K_5\} =$ **Keys**

- Adversary sees $E = (\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4})$
- Adversarial knowledge
 - Initial set: **Keys** = $\{K_1, K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E(Keys) = \{K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_{5}^{2}(Kevs) = \{K_{2}, K_{5}\}$
 - $\mathcal{F}^{3}_{+}(Kevs) = \{K_{5}\}$
 - $\mathcal{F}_{F}^{4}(Keys) = \{K_{2}\}$
- Adversarial knowledge: $S = \{K_2\}$
- $pat(E, FIX(\mathcal{F}_E)) = pat(E, \{K_2\}) = (\Box, \{K_2\}_{K_2}, \Box)$

- Adversary sees $E = (\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4})$
- Adversarial knowledge
 - Initial set: **Keys** = $\{K_1, K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E(Keys) = \{K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_{F}^{2}(Kevs) = \{K_{2}, K_{5}\}$
 - $\mathcal{F}_{E}^{3}(Kevs) = \{K_{2}\}$
 - $\mathcal{F}_F^4(Keys) = \{K_2\}$
- Adversarial knowledge: $S = \{K_2\}$
- $pat(E, FIX(\mathcal{F}_E)) = pat(E, \{K_2\}) = (\Box, \{K_2\}_{K_2}, \Box)$

- Adversary sees $E = (\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4})$
- Adversarial knowledge
 - Initial set: **Keys** = $\{K_1, K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E(Keys) = \{K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_{F}^{2}(Kevs) = \{K_{2}, K_{5}\}$
 - $\mathcal{F}_{F}^{3}(Keys) = \{K_{2}\}$
 - $\mathcal{F}_{E}^{4}(Keys) = \{K_{2}\}$
- Adversarial knowledge: $S = \{K_2\}$
- $pat(E, FIX(\mathcal{F}_E)) = pat(E, \{K_2\}) = (\Box, \{K_2\}_{K_2}, \Box)$

- Adversary sees $E = (\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4})$
- Adversarial knowledge
 - Initial set: **Keys** = $\{K_1, K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E(Keys) = \{K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_{E}^{2}(Keys) = \{K_{2}, K_{5}\}$
 - $\mathcal{F}_{F}^{3}(Keys) = \{K_{2}\}$
 - $\mathcal{F}_{E}^{4}(Keys) = \{K_{2}\}$
- Adversarial knowledge: $S = \{K_2\}$
- $pat(E, FIX(\mathcal{F}_E)) = pat(E, \{K_2\}) = (\Box, \{K_2\}_{K_2}, \Box)$

- Adversary sees $E = (\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4})$
- Adversarial knowledge
 - Initial set: **Keys** = $\{K_1, K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E(Keys) = \{K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E^2(Keys) = \{K_2, K_5\}$
 - $\mathcal{F}_{E}^{3}(Keys) = \{K_{2}\}$
 - $\mathcal{F}_{E}^{4}(Keys) = \{K_{2}\}$
- Adversarial knowledge: $S = \{K_2\}$
- $pat(E, FIX(\mathcal{F}_E)) = pat(E, \{K_2\}) = (\Box, \{K_2\}_{K_2}, \Box)$

- Adversary sees $E = (\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4})$
- Adversarial knowledge
 - Initial set: **Keys** = $\{K_1, K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E(Keys) = \{K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E^2(Keys) = \{K_2, K_5\}$
 - $\mathcal{F}_{E}^{3}(Keys) = \{K_{2}\}$
 - $\mathcal{F}_{E}^{4}(Keys) = \{K_{2}\}$
- Adversarial knowledge: $S = \{K_2\}$
- $pat(E, FIX(\mathcal{F}_E)) = pat(E, \{K_2\}) = (\Box, \{K_2\}_{K_2}, \Box)$

- Adversary sees $E = (\{K_4\}_{K_1}, \{K_2\}_{K_2}, \{\{K_3\}_{K_1}, K_5\}_{K_4})$
- Adversarial knowledge
 - Initial set: **Keys** = $\{K_1, K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_E(Keys) = \{K_2, K_3, K_4, K_5\}$
 - $\mathcal{F}_{E}^{2}(Keys) = \{K_{2}, K_{5}\}$
 - $\mathcal{F}_{E}^{3}(Keys) = \{K_{2}\}$
 - $\mathcal{F}_{E}^{4}(Keys) = \{K_{2}\}$
- Adversarial knowledge: $S = \{K_2\}$
- $pat(E, FIX(\mathcal{F}_E)) = pat(E, \{K_2\}) = (\Box, \{K_2\}_{K_2}, \Box)$

Proof sketch of main soundness theorem

- Notice: $\mathcal{F}_E(S) = \{K \in \mathsf{pat}(E,S)\}$
- Properties of patterns:
 - pat(E, Keys) = E
 - $pat(pat(E, S), T) = pat(E, S \cap T)$
 - $\{K \in \mathsf{pat}(E,S)\} \subseteq \{K \in E\}$
- Lemma: $\llbracket E \rrbracket \approx \llbracket \mathsf{pat}(E, \{K \in E\}) \rrbracket$
- Corollary: $\forall i. \llbracket \mathsf{pat}(E, \mathcal{F}_E^i(\mathsf{Keys})) \rrbracket \approx \llbracket \mathsf{pat}(E, \mathcal{F}_E^{i+1}(\mathsf{Keys})) \rrbracket.$

$$\begin{split} \llbracket E \rrbracket &= & \llbracket \mathsf{pat}(E, \mathcal{F}_E^0(\mathsf{Keys})) \rrbracket \\ &\approx & \llbracket \mathsf{pat}(E, \mathcal{F}_E^1(\mathsf{Keys})) \rrbracket \\ &\approx & \cdots \\ &\approx & \llbracket \mathsf{pat}(E, \mathcal{F}_E^n(\mathsf{Keys})) \rrbracket \\ &= & \llbracket \mathsf{pat}(E, \mathsf{FIX}(\mathcal{F}_E)) \rrbracket \end{aligned}$$

Outline

- Abadi-Rogaway model and computational soundness
- 2 Defining the adversarial knowledge
 - Induction
 - Co-Induction
- 3 Conclusion and Open Problems

Conclusion

- Using GFP rather than LFP in symbolic definition of adversarial knowledge gives better correspondence between symbolic and computational semantics
- If computational cryptography is the "right" way to analyze security protocols, then much work in symbolic security analysis needs to be revisited
- Our is just a very simple step, and much more work needs to the done
- Main open problem: extend "co-inductive" approach to active attacks