Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers

Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

1 June 2010
1. Block Ciphers

2. The tool

3. Applications

4. Conclusion
Basics

Block cipher $E_K(P)$

- Input: Plaintext P and key K
- Output: Ciphertext C
Basics

Attacker does not know the key. He can fix:
- P and obtain C
- C and obtain P

and try to find:
- Distinguisher
- Key recovery
Differential Attacks

Differential analysis – the most popular form of attack. Find specific differences Δ_P, Δ_C s.t.:

\[
\text{plaintexts } (P, P \oplus \Delta_P) \quad \downarrow \\
\text{ciphertexts } (C, C \oplus \Delta_C)
\]
Differential Attacks

- Internally, a cipher has some number of rounds
- A key schedule from the master key produces round keys (subkeys)
Differential Attacks

Differential characteristic – round-by-round propagation of some initial difference

- Fixed-key differential characteristic - no difference in the key
Differential Attacks

Differential characteristic – round-by-round propagation of some initial difference

- Related-key differential characteristic - difference in the key as well
Recent Attacks on AES

- Related-key differential attack on AES-256 (Biryukov-Khovratovich-Nikolić, CRYPTO 2009)
- Related-key boomerang attacks on AES-192 and AES-256 (Biryukov-Khovratovich, ASIACRYPT 2009)
<table>
<thead>
<tr>
<th></th>
<th>Block Ciphers</th>
<th>The tool</th>
<th>Applications</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Block Ciphers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The tool</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Conclusion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our Objectives

- Create a tool for automatic search of related-key differential characteristics in all versions of AES
- Extend the tool and apply it to other ciphers
Byte-oriented block ciphers - All the transforms in the cipher are byte-oriented

- Big advantage: compact representation of the state and the subkeys is applicable ⇒ the effective size can be reduced by a factor of 8 ⇒ search becomes feasible (when there is low branching in the round transforms)

- Example: AES-128 has 128-bit state and 128-bit subkeys ⇒ 16-bit state and 16-bit subkeys ⇒ search space is 2^{32}

Ivica Nikolić (joint work with Alex Biryukov)
University of Luxembourg, Luxembourg
Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers
Matsui’s approach to DES

We base our tool on Matsui’s approach for search of the best fixed-key characteristic in DES.

- Given the probabilities of the best $1, 2, \ldots, r - 1$ round characteristics and some r-round characteristic it builds the best r-round characteristic.
- Recursive; extend the characteristics only if its prob. \times the prob. of the rest of the rounds is higher then the previous best prob. on all rounds.
Matsui’s approach

For each $r - 1$ round char.: extend for one round, and check if $P_r \cdot P_{n-r}^{best} \geq P_n^*$ (if $P_n > P_n^*$ update P_n^*)
Matsui’s approach

For each $r-1$ round char.: extend for one round, and check if
\[P_r \cdot P_{n-r}^{\text{best}} \geq P_n^* \] (if $P_n > P_n^*$ update P_n^*)

\[P_1 \cdot P_{n-1}^{\text{best}} \geq P_n^* \]
Matsui’s approach

For each $r - 1$ round char.: extend for one round, and check if $P_r \cdot P_{n-r}^{best} \geq P_n^*$ (if $P_n > P_n^*$ update P_n^*)

\[
\begin{align*}
P_1 \cdot P_{n-1}^{best} & \geq P_n^* \\
P_2 \cdot P_{n-2}^{best} & \geq P_n^*
\end{align*}
\]
Matsui’s approach

For each \(r - 1 \) round char.: extend for one round, and check if
\[
P_r \cdot P_{n-r}^{best} \geq P_n^* \quad \text{(if } P_n > P_n^* \text{ update } P_n^*)
\]
Matsui’s approach

For each \(r - 1 \) round char.: extend for one round, and check if
\[
P_r \cdot P_{n-r}^{\text{best}} \geq P_n^* \text{ (if } P_n > P_n^* \text{ update } P_n^*)
\]

Ivica Nikolić (joint work with Alex Biryukov)
University of Luxembourg, Luxembourg

Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers
Matsui’s approach

For each \(r - 1 \) round char.: extend for one round, and check if

\[P_r \cdot P_{n-r}^{best} \geq P_n^* \] (if \(P_n > P_n^* \) update \(P_n^* \))

Ivica Nikolić (joint work with Alex Biryukov)
University of Luxembourg, Luxembourg

Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers
Matsui’s approach

For each $r - 1$ round char.: extend for one round, and check if

$$P_r \cdot P_{n-r}^{\text{best}} \geq P_n^* \text{ (if } P_n > P_n^* \text{ update } P_n^*)$$

\[
\begin{align*}
P_1 \cdot P_{n-1}^{\text{best}} &\geq P_n^* \\
P_2 \cdot P_{n-2}^{\text{best}} &\geq P_n^*
\end{align*}
\]

Ivica Nikolić (joint work with Alex Biryukov)

University of Luxembourg, Luxembourg

Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers
Matsui’s approach

For each $r - 1$ round char.: extend for one round, and check if

$$P_r \cdot P_{n-r}^{best} \geq P_n^*$$

(if $P_n > P_n^*$ update P_n^*)
Matsui’s approach: Pros and cons

- Computation complexity cannot be predicted - it depends on how "good" the round-reduced characteristics are (worst case, it is exponential)
- Requires negligible memory
- When too many one-round characteristics, the search becomes infeasible

We introduce modifications in the tool to overcome the last obstacle
Variants of the tool

Depending on the key schedule, different variants are interesting:

Subkeys consecutively obtained one from another

Subkeys obtained from the master key

Ivica Nikolić (joint work with Alex Biryukov)

Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers
Variants of the tool

Depending on the degree of branching in the key schedule (for a fixed difference), consecutive key schedule can be divided into:

- KS with low branching
- KS with high branching
Variant 1 - low branching, consecutive subkeys

Apply straightforward Matsui’s approach

One round characteristic

- key_{r–1}
- state_{r–1}
Variant 1 - low branching, consecutive subkeys

Apply straightforward Matsui’s approach

One round characteristic

- Go 1R in subkey and state
Variant 1 - low branching, consecutive subkeys

Apply straightforward Matsui’s approach

One round characteristic

- Go 1R in subkey and state
- XOR the subkey to the state
Apply Matsui’s approach, but change how one-round characteristics are produced

One round characteristic

\[\text{key}_{r-1} \quad \text{state}_{r-1} \]
Variant 2 - high branching, consecutive subkeys

Apply Matsui’s approach, but change how one-round characteristics are produced

One round characteristic

- Go 1R in state
Variant 2 - high branching, consecutive subkeys

Apply Matsui’s approach, but change how one-round characteristics are produced

One round characteristic

- Go 1R in state
- Take state_r
Variant 2 - high branching, consecutive subkeys

Apply Matsui’s approach, but change how one-round characteristics are produced

One round characteristic
- Go 1R in state
- Take state_r
- Produce subkey
Variant 2 - high branching, consecutive subkeys

Apply Matsui’s approach, but change how one-round characteristics are produced

One round characteristic
- Go 1R in state
- Take state
- Produce subkey
- Check if the subkey is good
Variant 3 - non-consecutive subkeys

Apply Matsui’s approach for fixed subkeys

1. Fix the master key difference, and obtain all possible subkeys differentials

2. For each characteristics in the state, apply the variant 1 assuming the subkey characteristics are already fixed
Ivica Nikolić (joint work with Alex Biryukov)
University of Luxembourg, Luxembourg
Automatic Search for Related-Key Differential Characteristics in Byte-Oriented Block Ciphers
AES

- AES has high branching in the key schedule due to XORs ⇒ variant 2 is used
- Results:

<table>
<thead>
<tr>
<th>Cipher</th>
<th>Attack</th>
<th>Rounds</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-128</td>
<td>Differential</td>
<td>5</td>
<td>$\geq 2^{6.17}$</td>
</tr>
<tr>
<td></td>
<td>Boomerang</td>
<td>7</td>
<td>2^{97}</td>
</tr>
<tr>
<td>AES-192</td>
<td>Differential</td>
<td>11</td>
<td>$\geq 2^{6.31}$</td>
</tr>
<tr>
<td></td>
<td>Boomeranga</td>
<td>12</td>
<td>2^{169}</td>
</tr>
<tr>
<td>AES-256</td>
<td>Differentialb</td>
<td>14</td>
<td>2^{131}</td>
</tr>
</tbody>
</table>

aThe attack was improved
bThe characteristic was confirmed to be optimal
Camellia

The key schedule is not byte-oriented, we attack a modified version with changed rotational amounts

- Camellia has non-invertible key schedule \Rightarrow variant 3 is used

Results:

- Differential characteristic on 8 rounds (out of 18)
- Chosen-key attack on all 18 rounds
Khazad

- Khazad has high branching in the key schedule due to XORs
 ⇒ variant 2 is used

Results:
- Differential characteristic on 7 rounds (out of 8)
- Boomerang attack on 7 rounds – lower complexity
- Chosen-key attack on all 8 rounds
1. Block Ciphers

2. The tool

3. Applications

4. Conclusion
Conclusion

- Presented a tool for automatic search of related-key differential characteristics in byte-oriented ciphers
- The best characteristics in AES, byte-Camellia and Khazad were found
- The tool can be used to prove to resistance of ciphers to RK attacks
Future Research

- Apply a similar tool to other byte-oriented primitives (hash functions with bigger internal state)
- Apply the tool to ciphers with a small non-byte oriented part (such as the original version of Camellia)
- Find a similar tool for word-oriented primitives