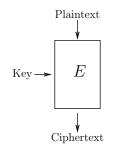
Key Recovery Attacks of Practical Complexity on AES-256 Variants With Up To 10 Rounds

Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir

> University of Luxembourg — Luxembourg ENS — Paris, France Hebrew University — Jerusalem, Israel The Weizmann Institute — Rehovot, Israel

> > Monaco, EuroCrypt'10 1 June 2010

・ 同 ト ・ ヨ ト ・ ヨ ト


Block ciphers

Biryukov, Dunkelman, Keller, <u>Khovratovich</u>, Shamir Practical Key Recovery Attacks on AES-256 Variants

æ

▲□ ▶ ▲ 臣 ▶ ▲ 臣

Block ciphers

- Bijectivity;
- Efficiency;
- High diffusion;
- High confusion.

э

・ 同 ト ・ ヨ ト ・ ヨ

Related-key attacks

Framework:

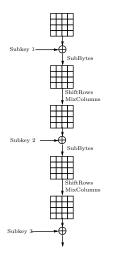
- Find a secret *K*;
- Encrypt and decrypt on K and K' = f(K);

Why to use:

- A cipher is often claimed to be and is used as a universal primitive, so it must resist related-key attacks.
- WEP and 2PKDP were attacked via related-key weaknesses.

Relation mapping f:

- Simple: $f(x) = x \oplus a$;
- Strong: *f*(*x*) = Some Cipher Related Operation(*x*);
- Trivial: zeroing the last bit $f(x) = x \& 111 \cdots 10$ and check if f(K) = K.


直 と く ヨ と く ヨ と

AES

Biryukov, Dunkelman, Keller, Khovratovich, Shamir Practical Key Recovery Attacks on AES-256 Variants

æ

AES

- 128-bit block;
- 128/192/256-bit key;
- 10/12/14 rounds;
- AES-192 and AES-256 were approved by NSA for TOP SECRET;

・ 同 ト ・ ヨ ト ・ ヨ

э

Slow cryptanalytic progress before 2009.

Attacks on AES-256

Year	Attack	Rd.	Compl.	Authors
1998	Square	6	2 ⁷²	Daemen-Rijmen
2000	Square	8	2 ¹⁸⁸	Kelsey, Lucks et al.
2000	Related-key square	9	2 ²²⁴	—
2005	Related-key	10	2173	Biham et al.
2005	rectangle	10		Dilidili et di.
2009	Weak related-key	14	2 ¹³¹	BKN
2009	Related-subkey	14	299.5	Pinukov Khovrotovich
2009	boomerang	14	2	Biryukov-Khovratovich

All these complexities are non-practical.

э

同 ト イ ヨ ト イ ヨ ト

Our goals

Biryukov, Dunkelman, Keller, Khovratovich, Shamir Practical Key Recovery Attacks on AES-256 Variants

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

The question we answer:

How far is AES from being "practically insecure"?

• = • •

Security margin

Two approaches to estimate the security margin:

- Compare the best known attack on the full AES with practical bound — previous papers;
- Attack the maximum number of rounds with practical complexity — our paper.

The latter works better for still unbroken ciphers (single-key AES, Serpent).

.

What is practical?

Factors of practicality:

- Amount of data;
- Adaptive and non-adaptive attacks;
- Single and related key attacks;
- Complexity requirements.

Total running time is a single well-defined number.

Our understanding

How to choose the threshold?

- 2⁵⁵ DES evaluations were carried out;
- 2⁶¹ SHA-1 evaluations were abandoned;
- We choose $\approx 2^{56}$ AES encryptions, which is about one week load of COPACOBANA.

Such attacks can be verified experimentally.

Attacks with complexity below 2⁵⁶

Attacks on AES with practical complexity:

Year	Attack	Rd.	Compl.	Authors
1998	Square	5	2 ⁴⁰	Daemen-Rijmen
2000	Impossible	5	2 ³¹	Biham-Keller
2004	Boomerang	5	2 ³⁹	Biryukov
2000	Square	6	2 ⁴⁴	Kelsey, Lucks et al.

→ 3 → < 3</p>

Simplest key relations

- There exist key relations leading to trivial attacks;
- The key relation should be as simple as possible;
- The simplest are bit flips.

< ≣ > <

AES	8-9 rounds
Our goals	
Attack	Conclusion

Attacks

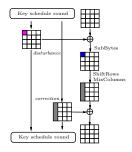
Biryukov, Dunkelman, Keller, <u>Khovratovich</u>, Shamir Practical Key Recovery Attacks on AES-256 Variants

<ロ> (日) (日) (日) (日) (日)

æ

8-9 rounds 10-11 rounds Conclusion

Local collision in AES


SHA-0

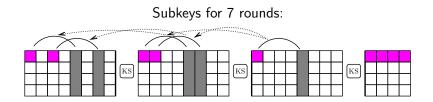
Difference from the message:

AES

Difference from the key:

(日)

э


Probability 2⁻⁶

Probability 2^{-3}

Biryukov, Dunkelman, Keller, <u>Khovratovich</u>, Shamir Practical Key Recovery Attacks on AES-256 Variants

8-9 rounds 10-11 rounds Conclusion

Key schedule trail

1 local collision expands to 5.

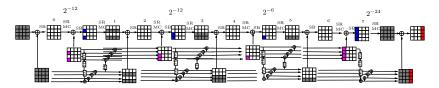
A 10

→ 3 → 4 3

3

AES 8-9 rounds Our goals 10-11 rounds Attack Conclusion

8 rounds — attack in one second

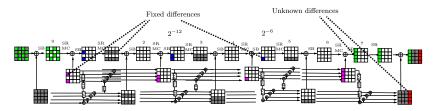

Biryukov, Dunkelman, Keller, Khovratovich, Shamir Practical Key Recovery Attacks on AES-256 Variants

э

(日) (同) (三) (三)

8-9 rounds 10-11 rounds Conclusion

Basic differential



- 8 rounds
- 9 local collisions;
- Distinguisher based on a tweaked differential with complexity 2³⁰ confirmed experimentally.

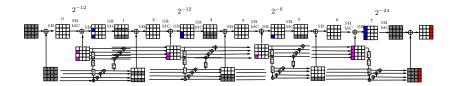
< 🗇 > < 🖃 >

8-9 rounds 10-11 rounds Conclusion

8 rounds — simplest attack

- Use truncated differential in the first and last rounds;
- Attack in 2²⁶;
- Recover 35 key bits.

▲ 同 ▶ → 三 ▶

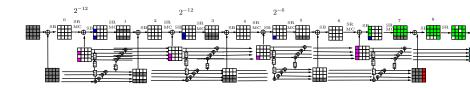

AES 8-9 rounds Our goals 10-11 rounds Attack Conclusion

9 rounds: full key recovery in 239

Biryukov, Dunkelman, Keller, Khovratovich, Shamir Practical Key Recovery Attacks on AES-256 Variants

8-9 rounds 10-11 rounds Conclusion

9 rounds — full key recovery

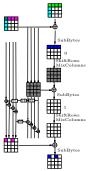


(日)

э

8-9 rounds 10-11 rounds Conclusion

9 rounds — full key recovery



- Extend basic differential;
- Truncate various sets of S-boxes;
- Use several truncated differentials;
- Guess-and-Determine approach to find key bits;
- Complete key recovery in 2³⁹.

AES 8-9 rounds Our goals 10-11 roun Attack Conclusion

9 rounds — related-subkey attack

First two rounds:

Relation between subkeys:

 $\Delta(K^{-1}) = -$, 4 bytes unknown.

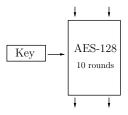
$$\Delta(\mathcal{K}^0) = \square, \quad \Delta(\mathcal{K}^1) = \square.$$

< 🗇 > < 🖃 >

13 active S-boxes in total;

- Chosen-ciphertext scenario;
- 56 key bits in 2³² time.

AES	8-9 rounds
Our goals	10-11 rounds
Attack	Conclusion


10 rounds: 2⁴⁵ time and data

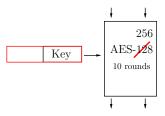
同 ト イヨ ト イヨ ト

3

8-9 rounds 10-11 rounds Conclusion

10 rounds

AES-128 has 10 rounds.

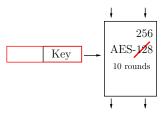

Biryukov, Dunkelman, Keller, <u>Khovratovich</u>, Shamir Practical Key Recovery Attacks on AES-256 Variants

э

<ロト <部ト < 注ト < 注ト

8-9 rounds 10-11 rounds Conclusion

10 rounds

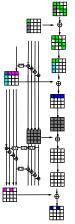


- AES-128 has 10 rounds;
- Let's try to make it stronger by taking a longer 256-bit key;

.⊒ . ►

8-9 rounds 10-11 rounds Conclusion

10 rounds


- AES-128 has 10 rounds;
- Let's try to make it stronger by taking a longer 256-bit key;
- Results are discouraging: Attack can be run on a PC.

< ∃ >

8-9 rounds 10-11 rounds Conclusion

10 rounds

First two rounds:

Relation between subkeys:

$$\Delta(\mathcal{K}^{-1}) =$$
, $\Delta(\mathcal{K}^{0}) =$

$$\Delta(\mathcal{K}^1) =$$
, $\Delta(\mathcal{K}^2) =$

< A >

- ₹ 🖬 🕨

- Chosen-ciphertext scenario;
- Attack in 2⁴⁵;
- Chosen-plaintext in 2⁴⁸.

AES	8-9 rounds
Our goals	10-11 rounds
Attack	Conclusion

11 rounds and more

< ∃ → <

8-9 rounds 10-11 rounds Conclusion

11 rounds: approaches

- Start from even or odd round;
- Restrict a few S-boxes;
- Minimum 2⁷⁰ time and data complexity.
- Non-practical now, but maybe in the future...

□ > < = > <

8-9 rounds 10-11 rounds Conclusion

Additional improvements

- \blacksquare 8 rounds: 2²⁶ time $\rightarrow~2^{21}$ time, 2⁸ keys.
- 9 rounds: key difference Hamming weight can be as low as 24.
- Plaintext bytes can be ASCII characters or even numeric.
- AES in the counter mode can be attacked;

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

-

AES	8-9 rounds
Our goals	
Attack	Conclusion

Conclusion

Biryukov, Dunkelman, Keller, <u>Khovratovich</u>, Shamir Practical Key Recovery Attacks on AES-256 Variants

□ ▶ ▲ 臣 ▶ ▲ 臣

8-9 rounds 10-11 rounds Conclusion

Conclusions

- AES security margin is much smaller than believed;
- AES-256 with the number of rounds of AES-128 is broken with practical complexity;
- AES key schedule is quite weak;
- Not a safe black-box anymore.
- Simplest scenarios are possible.

/□ ▶ < 글 ▶ < 글

8-9 rounds 10-11 rounds Conclusion

Further results

Rump Session today:

- New boomerang attacks on AES-256;
- Improved single-key attacks on AES-192 and AES-256.

・ 同 ト ・ ヨ ト ・ ヨ

AES	8-9 rounds
Our goals	
Attack	Conclusion

Questions?

æ

★聞▶ ★理▶ ★理