Concurrent Zero Knowledge: Simplifications and Generalizations

Rafael Pass Dustin Tseng Muthuramakrishnan Venkitasubramaniam

CORNELL UNIVERSITY

What is Zero Knowledge?

 \forall PPT verifier V*, \exists PPT simulator S such that

Simulated View

What is Zero Knowledge?

 \forall PPT verifier V^{*}, \exists PPT simulator *S* such that

Concurrent Zero-Knowledge

[DNS,DDN,RK,CKPR,KP,PRS,...]

What is known?

Our Simplification

Bad Random tape: Simulator fails Good Random tape: Simulator succeeds Idea: Map 1 bad to (distinct) 2^k good Previous Approach: Complicated mapping Our Idea - Composable proof

Map 1 bad unit to 2 good

Compose k times \Rightarrow failure probability 1/2^k We need Õ(logn) rounds

Our Generalization

First concurrent ZK protocol that works for multi-round commitments.

Result by Ong and Vadhan:

- Instance based commitments
- Unconditional constructions of commitments for languages in Statistical ZK Proof

$ZK \Rightarrow Concurrent ZK$ (unconditional)

If L has

- 1. Stat. ZK Proof $\Rightarrow \widetilde{O}(\log n)$ round Concurrent Stat. ZK Proof If L \in NP and has
- **2.** Stat. ZK Arg. $\Rightarrow \tilde{O}(\log n)$ round Concurrent Stat. ZK Arg.
- **3.** Comp. ZK Proof $\Rightarrow O(t(n)) + \tilde{O}(\log n)$ Concurrent Comp. ZK Proof
- **4.** Comp. ZK Arg. $\Rightarrow O(t(n)) + \tilde{O}(\log n) Concurrent Comp. ZK Arg.$

Thank You!