Concurrent Zero Knowledge: Simplifications and Generalizations

Rafael Pass Dustin Tseng
Muthuramakrishnan Venkitasubramaniam

CORNELL UNIVERSITY
What is Zero Knowledge?

∀ PPT verifier V^*, ∃ PPT simulator S such that
What is Zero Knowledge?

∀ PPT verifier V^*, ∃ PPT simulator S such that

Simulator S \approx Prover \approx Verifier V^*

Simulated View \approx View in real interaction
Concurrent Zero-Knowledge

[DNS, DDN, RK, CKPR, KP, PRS, ...]
What is known?

[RK, KP, PRS] For all languages in NP, there exists $\tilde{O}(\log n)$ round black-box concurrent ZK proof.

[KP] a strong simulator
- Not on a per session basis
- Dependent only on number of messages exchanged

More tomorrow!

Precise Concurrent Zero Knowledge
Our Simplification

Bad Random tape: Simulator fails
Good Random tape: Simulator succeeds

Idea: Map 1 bad to (distinct) 2^k good

Previous Approach: Complicated mapping

Our Idea - Composable proof

Map 1 bad unit to 2 good

Compose k times \Rightarrow failure probability $1/2^k$

We need $\tilde{O}(\log n)$ rounds
Our Generalization

First concurrent ZK protocol that works for multi-round commitments.

Result by Ong and Vadhan:

- Instance based commitments
- Unconditional constructions of commitments for languages in Statistical ZK Proof
$\text{ZK} \Rightarrow \text{Concurrent ZK (unconditional)}$

If L has

1. **Stat. ZK Proof** $\Rightarrow \tilde{O}(\log n)$ round **Concurrent Stat. ZK Proof**

 If $L \in \text{NP}$ and has

2. **Stat. ZK Arg.** $\Rightarrow \tilde{O}(\log n)$ round **Concurrent Stat. ZK Arg.**

3. **Comp. ZK Proof** $\Rightarrow O(t(n)) + \tilde{O}(\log n)$ **Concurrent Comp. ZK Proof**

4. **Comp. ZK Arg.** $\Rightarrow O(t(n)) + \tilde{O}(\log n)$ **Concurrent Comp. ZK Arg.**
Thank You!